Test and Evaluation/Science and Technology (T&E/S&T) Program
Electronic Warfare Test (EWT) Multi-Spectral Test Technology Area

A New Approach to Aircraft Survivability Equipment (ASE) Testing

Richard Robinson
AEgis Technologies

May 22, 2014

Distribution Statement A: Approved for public release – distribution is unlimited.
Briefing Outline

What is Aircraft Survivability Equipment (ASE)？

What is the Threat？

How is the Threat Engaged？

How is ASE Currently Tested？

What is Needed to Better Test ASE？

What is the MAST Program？

How MAST is Providing for a New Approach to ASE Testing.
What is ASE?

Today’s Combat Aviation Platforms are well equipped with offensive and defensive systems.

Defensive systems include equipment designed to enable the crew and aircraft to survive threat attacks. (e.g. Aircraft Survivability Equipment)
Infrared Countermeasure Suite

Missile Warning Systems
- AN/AAR-54 - NGC
 - UV Sensors
- AN/AAR-47 MWS - Loral/ATK
 - IR Sensors
- AN/AAR-57 CMWS - BAE
 - IR Sensors

Directed Energy Countermeasure Systems (DIRCMs)
- AN/AAQ-24 DIRCM - NGC
 - Laser Based
 - Installed on multiple platforms across services
- LAIRCM - NGC
 - AF version of the AAQ-24 with MWS for large aircraft
- DoN LAIRCM - NGC
 - Navy/Marine version of AAQ-24 with 2 color MWS & DIRCM
- CIRCM (Common Infrared Countermeasures) – NGC or BAE
 - Army PM-ASE is development lead for this Army/Navy/Marines directed energy next generation CM system
What is the Threat?

“Man Portable Air Defense Systems (MANPADS)”

- MANPADS are readily available worldwide and capable of destroying all types of aircraft.
- All major services list MANPADS as a significant threat to fixed and rotary wing aircraft.
- Homeland Security considers MANPADS as a potential threat to civilian aircraft when traveling below 20,000 feet.
- High cost and decreasing availability is making it more difficult to acquire threat MANPADS as test assets for ASE evaluation.
How is the Threat Engaged?

Successful Engagement Depends on the Operation Of Multiple ASE Components

1. MWS DETECT & DECLARE
2. SLEW & HAND-OFF
3. TRACK
4. JAM

Laser IRCM System Effectiveness

\[P_{\text{miss}} = P_{\text{declare}} \times P_{\text{handoff}} \times P_{\text{track}} \times P_{\text{jam}} \]
How is ASE Currently Tested?

Simulated Missiles and Countermeasure (HWIL Testing)

Simulated Missile Against Actual Aircraft on Range

Actual Missile Against Moving Simulated Aircraft (Aerial Cable Car)

Highest fidelity testing would use an actual MANPADS against an actual aircraft with installed ASE, but Aircrew safety and asset destruction prevents this live testing.
What is Needed to Better Test ASE?

“Realistic Surrogate MANPADS Missiles”

Surrogate MANPADS Must:
- Match Threat In-Band Radiance
- Match Threat Trajectory
- Match Threat Launch Signature

OAR Testing Provides:
- Real Sensor Response
- Real Atmospheric Transmission
- Real Slant Range to Threat
- Real UV/IR Clutter Background
- Real Battlefield Obscurants & False Alarm Targets

Match On-Aperture Threat Signatures Spectrally, Temporally & Spatially

Distribution Statement A: Approved for public release – distribution is unlimited.
What is the MAST Program?

- MAST is a joint S&T program sponsored by the OSD Test Resource Management Center (TRMC) and the U.S. Army Aviation Missile Research Development and Engineering (AMRDEC).
- The objective of MAST is to develop and demonstrate a surrogate MANPADS missile system that:
 - Emulates the actual threat IR/UV signature spectrally, spatially and temporally ("Looks like the threat")
 - Flies a similar trajectory to the actual threat ("Flies like the threat")
 - Provides non-destructive testing (Collision avoidance)
 - Provides for lower cost testing (Low Cost motors and Recoverable avionics sections)

Distribution Statement A: Approved for public release – distribution is unlimited.
MAST Concept of Operations

Programmable Inertial Guidance, Collision Avoidance and Recovery Allows for Low Cost Reusable Testing

1 Prelaunch
- Setup, checkout & initialization
- Initialize Inertial Guidance

2 Launch
- Eject Motor Flash
- Tube Ejection & Spin-up

3 Boost/Sustain
- SRM Ignition Flash
- Realistic Boost/Sustain Plume Signature
- Guide to Target

4 Collision Avoidance
- Evoked When Nearing Keep Out Zone
- Recovery Autopilot Takeover
- Collision Avoidance Maneuver

5 Separation/Recovery
- Vertical flight until apogee
- Missile Body Separation
- Drogue parachute deployed
- Motor casing falls away

6 Descent
- Slowed descent on drogue
- Main parachute deploy

7 Landing
- Safe Touchdown
- Known GPS Position

8 Post Launch
- Retrieve Missile
- Data Download
- Refurbishment

Distribution Statement A: Approved for public release – distribution is unlimited.
Missile Airframe Design

- **Battery Stack**
- **Telemetry Transmitter**
- **Payload**
- **Sensor**
- **Payload/Avionics Section**
- **Expendable SRM**
- **Payload/Avionics Section Reused for Multiple Flights**
- **Expendable Eject Motor**
- **Roll Frequency Sensor**
- **AVIONICS Stack**
- **Antenna**
- **CAS**
- **Flip Line Mechanism**
- **AVIONICS Stack**
- **Payload Sensor**

Expendable Eject Motor

Payload/Avionics Section Reused for Multiple Flights

Distribution Statement A: Approved for public release – distribution is unlimited.
Eject and Main Motors

“Look Like” the Threat

MAST is developing low-cost Eject Motors and Solid Rocket Motors (SRMs) that “Look Like” the threat missile in the UV and IR bands.

- Using commercial motor propellant formulas and fabrication processes
- Designed to match the threat spectral, temporal and spatial characteristics
- Extensive static testing and signature collection/analysis performed to match MANPADS motor signatures and thrust prior to flight testing.

Distribution Statement A: Approved for public release – distribution is unlimited.
Inertial Guidance of a Rolling Airframe “Fly Like” the Threat

• MAST flies a closed loop proportional navigation (ProNav) trajectory similar to the actual threat
• Demonstrated successful inertial guidance of a rolling airframe missile using the Honeywell Deeply Integrated Guidance and Navigation Unit (DIGNU) to provide IMU and flight computer.

Comparison of End Game for Recent Guided Flight at Eglin, AFB

Green – Simulation
Red – EDIGNU Estimation
Pink - Radar

Future versions of MAST will utilize Honeywell HG1930N

- More Accurate & Faster
- Smaller & Less Power/Heat
- Commercial & Cheaper

Distribution Statement A: Approved for public release – distribution is unlimited.
Missile Separation

Mid-Body Separation and Recovery Demonstrated on 10 Flights to Date

Distribution Statement A: Approved for public release – distribution is unlimited.
Safe Recovery & Reuse of MAST Avionics Sections Reduces Test Costs

Safe Recovery of Guidance Section from A Guided Flight Test in December 2013

Safe Recovery of Guidance Section from A Ballistic Flight Test in December 2011 (Drogue and Main Chute in Upper Left)

Safe Recovery and Reuse of Avionics Section Proven in Multiple Flights

Distribution Statement A: Approved for public release – distribution is unlimited.
MAST Development Partners

AMRDEC
Development Lead
S&T Dev Funding

OSD TRMC
S&T Dev Funding

PM ITTS
Executing Agency

PEO IEW&S
PM IRCM
ASE Requirements
Dan Jones
Sergio Cafarelli

MSIC
Threat Information,
Signature Verification,
Launcher - Gary Vincent,
Lori Keaty, Mickey Elkins,
Rodney Ratlidge

TSMO
Threat Assets
(Seekers and
TSPILS Simulator)
Jerry Touchton

46th Test Wing
Flight Testing
Ronnie Sookoo
David Misita

AMCOM
Safety Office
Brett Smith
Bob Mulkey

Distribution Statement A: Approved for public release – distribution is unlimited.
MAST Program Status

- **Program Kickoff** (Jun 2010)
- **Phase I Flight Testing** (Jun 2011)
 - 3 Missile Flight Tests at Eglin AFB demonstrated successful separation and recovery
 - Used Stinger eject motors and main motors
- **Phase I Flight Testing** (Dec 2011)
 - 3 Missile Flight Tests at Eglin AFB demonstrated avionics and DIGNU (IMU) survival through launch shock/accelerations
 - Demonstrated successful separation & recovery on all flights
- **Phase II Flight Testing** (Dec 2013)
 - 4 Missile Flight Tests at Eglin AFB demonstrated new low cost Eject Motors and Solid Rocket Motors
 - Guided Flights demonstrated inertial proportional navigation
 - Missile Warning System and Radiometers captured in-flight signatures
- **Phase II Extension Pending** (Jun 2014 – May 2015)
 - Army user requested additional refinements to signatures and incorporation of latest IMU technology (HG1930N)
 - S&T Graduation after 4 flight tests in May 2015
- **1st Production Lot Pending** (Jun – Aug 2015)
 - Eject Motors, Solid Rocket Motors and Avionics Sections requested to support Army sled testing and flight testing for the CIRCM program
- **CTEIP Submittal Pending** (FY16)
 - Incorporate produce-ability modifications, additional threat variants and build production missile for all 3 services

Distribution Statement A: Approved for public release – distribution is unlimited.
MAST Video

Missile Airframe Simulation Testbed – MANPADS

“Fly It Again SAM”
Other Test Applications for MAST Technologies

• Recoverable MAST missiles can be used as a bus to provide a ride for developmental payloads
 – Seekers, IMUs, fuzes, warheads, etc.

• Guidance & Control Technology can be reused to fly a wide range of surrogate target missiles
 – Any size from 2.75” up to 24” diameter
 – Rolling or non-rolling airframes
 – Inertial or GPS guidance

• Non-recoverable short range versions being considered for testing ASE on manned aircraft
Acknowledgement: This project is funded by the Test Resource Management Center (TRMC) Test & Evaluation/Science & Technology (T&E/S&T) Program through the U.S. Army Program Executive Office for Simulation, Training, and Instrumentation (PEO STRI)

Disclaimer: Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Test Resource Management Center (TRMC) Test & Evaluation/Science & Technology (T&E/S&T) Program and/or the U.S. Army Program Executive Office for Simulation, Training, and Instrumentation (PEO STRI)