Continuous System Monitoring as a Test Tool in the National Airspace System

Bruce Normann – CSSI Inc.
Outline

• There is both a need and an opportunity to extend the T&E discipline deeper into the operational portion of the lifecycle.

• Systems of Systems generate emergent behavior that can’t be reliably triggered by normal test inputs

• Continuous monitoring is the only way to detect emergent behaviors

• Existing DOE methods can be extended to big data

• Some monitoring elements are in place already, but feedback loops are not fully formed
Thesis

• Tools, techniques and data are all available to solve the challenge of detecting, identifying and analyzing emergent behavior in a SoS.

• Rigorous T&E methods can now be extended into the operational portion of the lifecycle by actively monitoring system-wide data streams.

• Increasing levels of autonomy in the SoS will dictate a more active monitoring approach

• Data-mining emergent behaviors (+/-) will provide richer feedback to system owners and builders
Foundation Concepts

• A System of Systems (SoS) will exhibit unique, continuing, emergent behaviors during the normal operational lifecycle.¹

• Emergent behavior is the cumulative effect of the actions and interactions among constituents of complex systems which cannot be predicted through analysis at any level simpler than that of the system as a whole, and is unavoidable in the presence of autonomous constituents.²,³
Emergent Behavior Is Real

• This is not an insignificant portion of the overall system behavior.

• >2,000 voluntary safety event reports are filed each month for NAS operations, by ATC personnel and aircraft operators. (event < incident < accident)

• Every event is not caused by emergent behavior, but many are mitigated, interrupted or resolved by human intervention (= emergent behavior).
Emergent behavior is persistent
Does it matter to T&E...?

- Several consistent themes in T&E industry discourse point to a sub-optimal solution for T&E of SoS.

- How much testing is enough?
- Test As We Fight (*or Operate...*)
- Testing for Capabilities: *The Importance of Mission Accomplishment in T&E*
The Root Problem

"You can’t know everything, at one time."

- A good deal of thought and effort goes into more and better forms of DOE to mitigate this fact.4,5

- System sustainment teams don't have a T&E mentality, particularly the STAT formalism that is becoming the norm for modern T&E practice.
The Normal T&E Charter

FAA - T&E Programs should be structured to:

- Provide essential information to support decision making
- Provide essential information for assessing technical and acquisition risk
- Verify the attainment of technical performance specifications and objectives
- Verify that systems are operationally effective and suitable for intended use
The T&E Charter

The 80/20 rule supports the charters...⁶

<table>
<thead>
<tr>
<th>Lifecycle Activity (Phase)</th>
<th>Errors Introduced</th>
<th>Errors Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements Analysis</td>
<td>55%</td>
<td>18%</td>
</tr>
<tr>
<td>Design</td>
<td>30%</td>
<td>10%</td>
</tr>
<tr>
<td>Testing</td>
<td>10%</td>
<td>50%</td>
</tr>
<tr>
<td>Operational Support</td>
<td>5%</td>
<td>22%</td>
</tr>
</tbody>
</table>
• T&E today is still fundamentally based on inputs and outputs, i.e. applying a forcing function and measuring the system response.

• A key semantic gap is shown by how the T&E industry parsed this phrase in 2011:
 – Test *As* We Fight.

 “.... ‘in the same manner’ *as* we fight”

 NOT

 “.... ‘at the same time’ *as* we fight”
How, Exemplified....

Example of "Test in the same manner as we fight"
An Inconvenient Truth

"You can't force unpredictable behavior; A+B = C+δ"

“Anything less than total war is just a test.”

Examples:

• Stress Testing v. Continuous Monitoring for Detecting Cardiac Arrhythmia

• Testing of auto emissions - Inspection v. OBD-II

• Black box driver behavior monitoring v. driving test
Impact of inadequate monitoring for IT networks

- Median age of data breach is > 6 months before detection
- 2/3 are **not** detected by in-house monitoring
- Usually detected by law enforcement investigation (after losses occurred...)

CSSI, INC.
Moving Research to Reality
Leveraging the Data

- Data that describes and documents emergent behavior is increasingly available; SWIM, VSRP, all forms of big data, unstructured data, etc.

- Finding the emergent behavior is more difficult, because it often depends on context. The challenge is to separate out the unpredicted behavior.

- Small-scale, point solutions are becoming more common, with advent of big data tool sets. *Example:* On-line monitoring of the emergent behavior and characteristics of a product to improve product design.¹⁰
A variety of network analysis methods can be used or adapted to identify, select, and order the critical relationships that will yield the most information from continuously monitored operational data.

- Multi-dimensional dependency (MDD) analysis11
- Systems Geometry12
- Bayesian Networks, Probabilistic Causal Modeling13
-
Where We Are Today

VSRP data has untapped potential for analysis:

<table>
<thead>
<tr>
<th>Category</th>
<th>Q2 2015</th>
<th>Q2 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsafe Situation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course/Routing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment Issue</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Go Around</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Emergency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NORDO/NORAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accident</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spillout/Whiskey Alert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Security Event</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of times Category was Selected
Where We Are Today

VSRP data has untapped potential for analysis:¹⁵
Where We Are Today

VSRP data has untapped potential for analysis: 16

Most Common Causal Categories and Factors Leading to a Conflict between IFR Aircraft

Unsafe Situation

- INDIVIDUAL FACTORS – Duty Related Distractions
- COORDINATION – Sector/Team Coordination

Altitude

- TRAINING AND EXPERIENCE – Training in Progress During Event
- AIRCRAFT PERFORMANCE OR PILOT ACTIONS – Non-Conformance With An Altitude Clearance
- ATC/PILOT COMMUNICATION/ CLEARANCE – Altitude Clearance Problem

Course/Routing

- AIRCRAFT PERFORMANCE OR PILOT ACTIONS – Timely Aircraft Turn
- INDIVIDUAL FACTORS – Action Or Plan Execution

IFR to IFR

- ATC/PILOT COMMUNICATIONS /CLEARANCE – Heading Clearance Problem
Where We Are Today

Bayesian networks can simplify the analysis
Next Steps - Opportunities

- Continuing research into data analysis techniques for large, operational data sets
- Establishing feedback to system and SoS design
- Enabling the move from Safety-I to Safety-II
 - Understanding ‘+ and –’ safety events
- Designing continuous monitoring components based on optimized interaction networks
- Integrating continuous monitoring into the concept development phase - moving up the chain again...
Next Steps - Challenges

- Not all SoS have extensive data collection, storage, & distribution
- Techniques may be viewed as 'reactive' in nature, since they don't solve for all unknowns before deployment and integration.
- May be viewed as adding unnecessary resources to sustainment phase of program
- Data generation may be 'slow'
- SoS are constantly evolving
Wrap Up

• The T&E discipline can be a relevant force during the operational portion of the lifecycle, continuously reducing risk and increasing system performance.

• A new ‘CTE’ toolset is required, and all the basic components are available to build it.

• Existing DOE methods can be leveraged as-is

• CTE supports modern product delivery methods

• Increasing levels of autonomy in the SoS will dictate a more active monitoring approach
References:

1. Emergent Behavior in Systems of Systems; John S. Osmundson, Thomas V. Huynh, Gary O. Langford; 2008; Naval Postgraduate School
2. Darwin Among the Machines; George Dyson; 1997; Perseus Books
3. An Emergent Perspective on Interoperation in Systems of Systems (CMU/SEI-2006-TR-003); David Fisher; 2006; Software Engineering Institute, Carnegie Mellon University
References (cont.):

6. DoD Test and Evaluation Management Guide; December 2012, Sixth Edition; After Figure 15-2, Software Error Distribution Summary (Notional), pp 166

7. Always On-On Demand: Supporting the Development, Test, and Training of Operational Networks & Net-Centric Systems; 16 September 2014; Dr. Christina Bouwens ASA(ALT), Dr. Nancy Bucher ASA(ALT); SoS Engineering Collaborators Info Exchange

8. Comparative Effectiveness of Exercise Testing and Continuous Monitoring for Detecting Arrhythmias in Patients with Previous Myocardial Infarction; 1974; Michael Crawford, M.D., Robert A. O’Rourke, M.D., Nallan Ramakrishna, M.D., Hartmut Henning, M.D., John Ross, Jr., M.D.; Circulation. 1974; 50:301-305; American Heart Association

10. On-line monitoring of the emergent behavior and characteristics of a product to improve product design; I. Goncharenko, V. V. Kryssanov; 1999; Integration of Process Knowledge into Design Support Systems - Proceedings of the 1999 CIRP International Design Seminar, University of Twente, Enschede, The Netherlands
References (cont.):

11. Critical Integration Links Identification for System of Systems; April 14, 2015; Mr. Subash Kafle and Dr. Jason McZara; SoS Engineering Collaborators Info Exchange

12. Systems Geometry: A Dimensional Approach to T&E Systems of Systems Understanding; 24 June 2014; Dr. Christina Bouwens, Dr. Jose Sepulveda, Dr. Nancy Bucher; SoS Engineering Collaborators Info Exchange

13. A probabilistic methodology to identify top causal factors for high complexity events from data; 2014; Firdu Bati; A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University

15. Airborne Incidents, An Econometric Analysis of Severity; December 19, 2014; Lee Biernbaum, Megan Price, Jacob Wishart; U.S. Department of Transportation, Volpe National Transportation Systems Center