Universal Beamforming Technology: Application and Tests

Anand Kelkar, Chief Engineer, CDSI, Simi Valley, CA
Brian Krinsley, Chief Engineer, Sea Range, NAWCWD, Pt. Mugu, CA
Norm Lamarra, President, CDSI, Simi Valley, CA
Tom Young, Executive Agent, TRMC, T&E, S&T, SET, Edwards AFB, CA
Introduction

• Beam Pointing of Phased Arrays is not new
 – H/W phase-shifters still used widely
 – Full Digital Beamforming (DBF) is recent
 – ~ 2000, DBF began migrating into RF applications

• In 2004, CDSI designed a DBF TM subsystem
 – Installed on (2) USAF E-9A aircraft in 2008
 • 10 beams, 112 dual-pol elements, S-band, 11dB G/T
 • Replacing 5-beam conventional array (3x bigger)

• Since then, technology continues to advance…
 – We introduce “UBT” architecture/development
Sponsors to date

• Ongoing support from E-9A Program
 – Operational “testbed” for algorithms/operations

• Office Secretary of Defense
 – Test Resource Management Center (TRMC)
 • T&E/S&T Spectrum-Efficient Technology (SET), Edwards AFB, CA.
 – Navy, NAVAIR/NAWCWD Pt. Mugu, CA.

• Goals:
 – Hi-risk/Hi-payoff R&D for T&E
 – Technology transfer
 – Risk Reduction

ITEA 2015 "Back To Basics“ --- Universal Beamforming Technology
412TW-PA-15616 Approved for public release; distribution is unlimited
Background

• Experience with E-9A (operational since 2008):
 – Continuous functionality improvement:
 • Upgrade firmware (once)
 • Upgrade CPU (twice), software (many times)
 – Avoid obsolescence:
 • Entire DBF subsystem (2 racks) is replaceable:
 – Lower cost (ADC/FPGA devices evolve continuously)
 – Higher performance (channels, bandwidth, data rates)
 – Higher reliability (redundancy, fewer devices)
 • Augment antenna array (e.g., add C-band)
 – New S-band array ½ size of prior: more weight/space available
“Classic” DBF approach (E9)

• Each element RF signal is downconverted to IF
 – IF digitized synchronously (ADCs)
 – Processed digitally (FPGAs):
 • Filtering/DDC → baseband “channel-element” streams
 – Tuning frequency, bandwidth – Calibration
 • Channel-elements combined into “beam” (each channel)
 – Simultaneous beams: e.g.: Σ,Δ, Polarization, Low SL (weighted)
 – Acquisition: Sequential Search – Tracking: Monopulse
 • Final output for each beam can be:
 – Analog IF (70 MHz) or Digital (Clock, Data)
Classic DBF Limitations

• As G/T increases:
 – Elements ↑ : cost increases as diameter2
 – Acquisition time ↑ : beamwidth$^{-2}$
• Multipath
 – Destructive interference across array
• If aperture is fixed – (not on pedestal)
 – Scan Loss
 – Grating Lobes (element spacing >0.5λ)
Multipath

Mechanics of Multipath

- Line-of-sight (LOS) illumination provides predictable behavior
- Pointing algorithms usually created using LOS principles
- Conventional algorithm produces sub-optimal aggregate signal
- Primary effect: aggregation of bounce path (at random phase)
- Secondary effects like Aperture Surface waves

Notional Multipath scenario

Reflective surface
- Smooth ground
- Ocean

Antenna Position

Actual source position

Line-of-Sight Path

Reflection Path (Multipath)

Bounce point

Damaged spectrum

ITEA 2015 "Back To Basics“ --- Universal Beamforming Technology
412TW-PA-15616 Approved for public release; distribution is unlimited
UBT Improvements

• Digital Beamforming Module (DBM) concept:
 – Reduced cost, increased reliability/flexibility
 – Higher G/T = more DBMs (plug-n-play)

• DBM forms a Generic Intelligent Subarray:
 – Can handle single- or multi-band RF elements
 – Cost of available devices continuously reducing
 – Efficiency of available firmware increasing

• Local intelligence provides many advantages:
 – Optimal SNR, rapid acquisition/tracking
 – Multipath mitigation, conformal/disjoint apertures, ...
UBT RF Hardware

- Single-band or multi-band RF elements
 - LNA/LNB, Filters (EMI), limiters, ...
 - Many alternative downconversion approaches:
 - Block IF downconversion: entire band of interest (E-9)
 - Can handle many beams in each block with fewer devices
 - Individual beam (frequency) down-converters:
 - Can place beam anywhere in wide RF range (= many devices)
- Can be co-located with RF panel
 - Minimal cable loss
UBT RF Hardware

• UBT uses “Building block” approach: DBMs
 – Digital Beamforming Modules

• DBM contains
 – RF elements
 – Filters
 – Downconverters
 – DBF Processing
 – Interconnection
UBT Firmware

• DBM Firmware performs:
 – Subsystem hardware configuration
 • Channel parameters (tuning, bandwidth)
 • High-level functions (calibration, angle/freq scan, acq/track)
 – Dynamic operations:
 • ADC synchronous sampling
 • Channelization/Filtering (e.g., DDC)
 • DBF processing (algorithms, data transport, combination)
 – Hardware monitoring/control (interface to software)

• Final output Firmware:
 – Digital-to-IF upconversion
 – Any other output processing
UBT Software

• Subsystem configuration by User
 – Channels, scenarios
• Subsystem monitoring/control
 – Nominal health or fault diagnosis
 – Debug of firmware interface (essential)
• User interface
 – Graphical presentation
 • spectra, scans, maps
• Can be a single host (e.g., laptop)
UBT Digital Hardware

• ADC configuration (depends on RF choices):
 – Higher speed/cost required for “block” approach
 – Lower speed/cost for targeted frequency approach

• FPGA configurations
 – Each DBM: ADC inputs, DBM I/O (data and control)
 – Final Stage: produces digital or IF beam outputs

• DBF processing:
 – DBM intelligence: calibrate/acq/track/multipath
 – Physical: board-stack possible on each RF panel
Multipath Resilience

- Multipath scenario was purposely created
 - Mitigation is built into UBT
 - Conventional steering vs. UBT steering
Target Acquisition

• Spectrum Analyzer in Time-trace mode:
 – 13 dB SNR source
 – Tracking ~2 msec after signal appears anywhere in view
UBT implementation

- UBT Phase-1 proof-of-concept goal:
 - Tri-band multi-beam TM subsystem at TRL6
- Brassboard implemented in <12 mos, using:
 - Available COTS multi-purpose boards:
 - FMC transceiver boards + FPGA development boards
 - Available COTS firmware: DDC/filtering/DUC/SERDES cores
 - Prototype tri-band RF panel (First RF)
 - Some custom hardware required for integration:
 - Global Clock/sync/trigger, LO synthesis/distribution
8” square RF panel:
 4x4 dual-pol elements
 1.4–5.2 GHz

Rollaway (4x4 DBM):
 16 FPGA boards
 32 FMC boards

Providing:
 16 dual-pol beams
 250 MHz bandwidth
 over 0.4–6 GHz
 up to 125MHz/beam
UBT in-house testing

• “Wheel of Death” (WOD)
 – 6 RF sources mounted on suspended wheel
 • Rotation at 20RPM: >120deg/sec angular rates
 – One source transmitting SOQPSK at 30Mbps L/S/C
• Small drone: carrying SOQPSK source
• Multi-channel acquire: “instantaneous”
 – Despite multipath everywhere (indoors)
• Zero BER at 30 Mbps at all angular rates
 – Inside testing and drone flight (video taken)
UBT testing at EAFB

• UBT set up adjacent to 8’ TM dish at EAFB
 – 3 static sources: pole mounted
 – 1 flying source: 5 Mbps SOQPSK (L/S/C)
 • Flight path (blue) shown on map

• Pulsed interference:
 – Radar sweeps by...
 • Produce short error bursts
 • No front-end filtering installed

• Tracking Results:
 – Zero BER up to 45mi
 • Aircraft-aspect dependent
 • Discounting pulsed interference
 • Near theoretical limit For 8” aperture
 – Multipath mitigation demonstrated from flight-line
UBT vs. Reflector systems

• A specific DBM can be used in various ways, e.g.:
 – 8 beams for dual-pol 4x4 array (individual downconverters)
 – 1 beam for 16x16 single-pol array (different RF cabling)

• Decision-space model constructed:
 – Using today’s assumptions
 – Competes with dishes on cost
 • Up to 20’ for some cases
 • Could replace dish farm
 – Potential advantages, e.g.:
 • Multi-beam requirements
 • Limited or conformal space
Conclusions

• UBT concept demonstrated: TRL6 brassboard
 – Using available boards/firmware (risk reduction)

• Benefits:
 – Near-theoretical performance
 – Multipath resilience, “instantaneous” acq/track
 – High bandwidth/beam-count combinations
 – DBF has become cost-competitive vs. dishes
 • DBM cost continues to reduce over time
 • Potential ground, sea, airborne applications