Test and Evaluation/Science and Technology Program
Advanced Instrumentation Systems Technology (AIST)

Precise TSPI of Guided Munitions
Robert B. Alwood (ENSCO) and George Shoemaker, PhD (AIST)

20th Test Instrumentation Workshop
10 May 2016
An independent system providing high-rate, high-accuracy TSPI from launch to impact for T&E of guided munitions

RF electronics on the system under test (SUT) and on the ground provide full 6-DOF tracking for T&E
PAWS Team

Sponsor: Test Resource Management Center
Science and Technology Program
Advanced Instrumentation Systems Technology

Contractor: ENSCO, Inc.

Partner: Army Research Laboratory
Lethality Division
Guidance Technologies Branch
PAWS Goals

• Precise, accurate, and high-rate TSPI for guided munitions
• Continuous six-degree of freedom (6-DOF) TSPI from launch to impact
• Independent of GPS
• Accuracy that exceeds the navigation and guidance performance of the guided munition
• Fully automated data analysis with prompt first-look
• Minimal cost and operational burden
S&T Strategy

- RF-only measuring scheme to minimize electronics package and improve robustness to high shock of launch

- Develop and demonstrate with 120 mm mortar body and ARL-developed reusable instrumented test article (RITA)

- General-purpose capability – mid-body or other customized integration possible for future

- PAWS Weapons Component (WC) currently implemented as a screw-in replacement to a conventional mortar fuze

PAWS is an entirely RF-based TSPI capability
No inertial or other sensors are required
Key Enabling Technology

Round-trip time-of-flight RF ranging enables PAWS

RF ranging transaction overview:

– *Radio A* transmits a request packet to *Radio B*

– *Radio B* receives the packet, computes ranging observables, and transmits a response packet back to *Radio A* with observables in payload

– *Radio A* receives the response packet and computes additional ranging observables to complete round-trip transaction

A **rapid** process, each round-trip transaction typically 2 ms

An **accurate and precise** process with distance measurements having centimeters-level performance and implementable on resource-constrained hardware
PAWS Components

PAWS-WC (weapons component)
- Ranging radio transceiver
- Five antennas – one nose cone and four annular antennas
- Self-contained power
- Integrated into replacement for a standard fuze

PAWS-GC (ground component)
- Ranging radio transceiver
- Wide-beam antennas
- Storage for raw data

The data products of PAWS are:
- Continuous history of projectile 6-DOF from launch to impact
- 100% raw data storage on PAWS-GC
PAWS-WC

Components:
- Custom five-channel, gun-hardened, miniaturized ranging radio
- Five custom antennas
- Rechargeable Li-Po battery
PAWS-GC

• Man-portable ground stations
• System interface for command, control, and data
 – COTS data link for networked operation
• Synchronized using ranging
 – Ranging-disciplined reference oscillator
• Single measuring antenna
• 100% data logging on board
 – Data automatically transferred back to controller node for processing on laptop
• Antenna mounted on mast
 – Adjustable height for hilly terrain
 – Design allows for wider angle visibility
PAWS makes multiple physical measurements between the GC’s and the WC’s during flight:

✓ Round-trip time-of-flight providing distance,
✓ Interferometric measurements providing attitude of the WC,
✓ Relative velocity measurements between GC and WC, and
✓ Measurements of attitude rate on the PAWS-WC.

All of these measurements are made in each RF transaction. Measurements are combined in a Kalman filter to estimate the 6-DOF states of the projectile through flight.

Automatic computation of position and attitude using GPS-independent, RF-only measurements
Concept of Operation

Pre-test
- Deploy 4 GC’s on test range
- Initialize GC’s and GC network
- Prepare and initialize WC’s
- Verify communication between components → system ready
- Launch mortar

During test
- GC’s range to WC’s throughout test
- GC’s range intermittently to each other throughout test for time synchronization
- Measurement data stored at each GC

Post-test
- Measurement data is downloaded to a central GC
- Data processed to present quick-look results (seconds)
- Data post-processed for refined results (minutes)
Spin and Shock Tests

✓ Attitude measurement performs as expected when spun

✓ Single measurement dropped on launch shock

Performance Spin Test: Roll Rate

PAWS-WC in test fixture

PAWS-GC antenna
Positioning Test

2-D positioning test with pre-surveyed GCs and ground truth points.
Positioning Test Video
“Soft Launch” Tests at ARL

Air cannon launched ballistic trajectories
Soft Launch Test Results

PAWS Position Output (Smoothed)

- 6 successful launches at 2 different launch Quadrant Elevation
- Positioning Results meet expectations

✓ Measurements performed as expected

✓ 6 successful launches at 2 different launch Quadrant Elevation
✓ Positioning Results meet expectations
Current Status

- Designed, implemented, and tested prototype GC and WC
- Verified WC performance at high spin rate
- Verified WC performance through launch shock
- Quantified expected system performance in a software simulator
- Validated expected system performance with lab and field testing

TRL-5 system and software successfully developed and tested
PAWS Technology

Key technologies:
- Accurate, high-rate measurement of position via RF measurements
- Accurate, high-rate measurement of orientation via RF carrier phase measurements
- Integrated into replacement for standard fuze
- Fully automated computation of SUT 6-degree of freedom TSPI

Capabilities:
- High-precision 6-DOF TSPI – *Complete, accurate TSPI*
- Independent of GPS – *Well-suited for GPS jamming tests*
- Integrates via replacement fuze – *Standard, easy-to-use*
- Automatic results – *No engineering analysis required*

High-accuracy TSPI for guided munitions
Acknowledgement and Disclaimer

This material is based upon work supported by the Test Resource Management Center (TRMC) Test and Evaluation/Science & Technology (T&E/S&T) Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI) under Contract No. W900KK-13-C-0035.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Test Resource Management Center (TRMC) Test and Evaluation/Science & Technology (T&E/S&T) Program and/or the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI).