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Overview

 Multi-Band Optical Tracking Systems (MBOTS)
* Predictive model for MBOTS performance
* Definition of p(test success)




What are MBOTS?

Capabilities Applications
* Track objects * Laser designation
* Record * Missile testing
— High-speed images * Product Evaluation
— Pointing angles * Satellite tracking
— Time-space-position

* Fire Control
e Surveillance

info (TSPI)
— Spectral data



Test Scenario Geometry
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Requirement: Estimate target position to within 1 meter



Error Defined
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Uncertainty and Viewing Geometry

Favorable Stressing
4 . — e .
3_
—
g Y
> 1t
) A A
0 5 10 0 5 10
X [km] X [km]

As y decreases, area of overlap (uncertainty) increases



Monte Carlo Approach

* Draw angles from
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e Determine intersection
point between lines-of-sight a B
e Calculate Euclidean distance U A

between true and estimated
target position



Visualizing Positional Uncertainty
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What do we
want to
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Positional Accuracy vs. Error Budget
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Determining Optimal Site Placements

Target at Midpoint of Target at Starting
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Optimal Site Placement Across Trajectory

Optimal MBOTS location:

(x,y,) =(2.1 km, 1.8 km)
and

(x,,¥,) = (7.9 km, 1.8 km)
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MBOTS Positional Accuracy:
Predicted vs. Actual
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*Data from a site-acceptance test for the Photo-Sonics Mobile Multi-
Spectral TSPl System (MMTS), White Sands Missile Range, 2012



How To Define Success?

Position error < 1m

‘ Viewing geometry

“9 E = p(Position error <1m) >0

’ target pogition [km] 10 Con dition a/ly
Probabilistic success

p(success | 6, 0)=p[E|B, 0]
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Way Forward 2013
@
e MBOTS system accuracy model

— Future enhancements

* 6 degrees-of-freedom (DOF) trajectory

propagator to support motion dynamics,
complex trajectories

* Modeling of optics, auto-tracker
* Approach is extensible to multiple MBOTS

e Approach for defining p(test success)

— Result may be used as evidence for T&E
resource allocation



Backup
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Mobile Multi-Spectral TSPl System (MMTS)

Nominal Payload
Maximum Payload

Standard
Configuration

Optional
Configuration
Azimuth Torque
Elevation Torque
Azimuth, Elevation
Acceleration

Azimuth, Elevation
Velocity

Specifications :
600 lbs. Featu res.
1000+ Ibs. with reduced *Fully Integrated Pedestal and
accuracy and performance Sensor Control Software
On-axis optical payload; no .
man-on-the-mount .ReaI_Tlme TSPI data OUtpUt
On-axis optics with off-axis Single station solution
3da .
*Sensors and SyStem Time-
2 x 300 ft Ibs Synchronized to IRIG @ 250 Hz
100+ degrees/sec” with eDual gate auto_tracking with
nominal payload .
S Camera Link @ 250 Hz

*Remote Control Console

6500 lb. trailer-mounted °D|g|ta| Servo Ampllfler

Dimensions

Encoder

pedestal with single axle
123L x 85W x BOH inches [plus
21" trailer tongue)

24-bit absolute position

Turmn & Star
Dump | Calibration

Calibration

MNo Radar

Radar on Top -

i'tn
" Radar on Side

optical encoder with 23-bit

quadrature output for veloc



MBOTS Key Components

Sensors

Elevation Encoder Azimuth Encoder
Elevation Motor Azimuth Motor
Amplifier

Servo Controller

Operator

Controller Time Source
Interface

Auto Tracker Data Recorder



Test Value Quantification

Table 3-8
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Activities external to
research framework

Program

Figure 3-4

Figure 3-8
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Priorities
and Issues Develop
Uncertainty
Priorities
(Sub-Framework)

Establish
Uncertainty
Reduction
Objectives
(Sub-Framework)

Develop Test
Options and

Optimize Test
Portfolio
(Process)

Table 3-7

*From “Test and Evaluation Resource Allocation Using Uncertainty Reduction

as a Measure of Test Value,” E. A. Bjorkman, 2012




Systematic Error Sources

& =

Zero Offset
Collimation

Tilt

Vertical Deflection
Droop
Non-orthogonality
Parallax
Refraction




Model Assumptions

e 2D model

— Elevation angle assumed constant, zero degrees
— Target follows straight path

 CKEM target visible and tracked throughout
trajectory

— 1.5m length, solid-fuel rocket
— Velocity: 6.5+ Mach



