

System of Systems 2013

Optimizing the Test Space for Multi-Band Optical Tracking Systems (MBOTS)

Michael Horii

hoto-Sonics, Inc.

Overview

- Multi-Band Optical Tracking Systems (MBOTS)
- Predictive model for MBOTS performance
- Definition of p(test success)

What are MBOTS?

Capabilities

- Track objects
- Record
 - High-speed images
 - Pointing angles
 - Time-space-position info (TSPI)
 - Spectral data

Applications

- Laser designation
- Missile testing
- Product Evaluation
- Satellite tracking
- Fire Control
- Surveillance

Requirement: Estimate target position to within 1 meter

Error Defined

Uncertainty and Viewing Geometry

As y decreases, area of overlap (uncertainty) increases

Monte Carlo Approach

• Draw angles from

$$\alpha_i \sim N(\mu = \alpha, \sigma^2), i = 1, 2, ..., n$$

 $\beta_i \sim N(\mu = \beta, \sigma^2), i = 1, 2, ..., n$

- Determine intersection point between lines-of-sight
- Calculate Euclidean distance between true and estimated target position

Visualizing Positional Uncertainty

Euclidean Distance Distributions

Positional Accuracy vs. Error Budget

Determining Optimal Site Placements

Target at Midpoint of Trajectory

Target at Starting Point of Trajectory

High accuracy

Favors the edges, Reduced accuracy

Optimal Site Placement Across Trajectory

Optimal MBOTS location: $(x_1, y_1) = (2.1 \text{ km}, 1.8 \text{ km})$ and $(x_2, y_2) = (7.9 \text{ km}, 1.8 \text{ km})$

MBOTS Positional Accuracy: Predicted vs. Actual

*Data from a site-acceptance test for the Photo-Sonics Mobile Multi-Spectral TSPI System (MMTS), White Sands Missile Range, 2012

How To Define Success?

Position error $\leq 1m$

 $E \equiv p(Position error \le 1m) \ge \theta$

Conditionally Probabilistic success

p(success $| \theta, \sigma) = p[E|\theta, \sigma]$

Way Forward

System of Systems 2013

- MBOTS system accuracy model
 - Future enhancements
 - 6 degrees-of-freedom (DOF) trajectory propagator to support motion dynamics, complex trajectories
 - Modeling of optics, auto-tracker
 - Approach is extensible to multiple MBOTS
- Approach for defining p(test success)
 - Result may be used as evidence for T&E resource allocation

hoto-Sonics, Inc.

References

- Downey, G.; Stockum, L. "Electro-Optical Tracking Systems Considerations," <u>Acquisition, Tracking and</u> <u>Pointing III</u>, Vol. 1111, 1989.
- 2. Joint Range Instrumentation Accuracy Improvement Group, "IRIG Optical Tracking Systems Calibration Catalog," Document 755-99, Secretariat, Range Commanders Council, White Sands Missile Range, New Mexico, February 1999.
- 3. Das, R.K. "Test and Evaluation of Tactical Missile System Using Electro-Optical Tracking System," <u>ITEA</u> <u>Journal</u>, 30, 2009, 143-148.

Mobile Multi-Spectral TSPI System (MMTS)

Specifications			
Nominal Payload	600 lbs.		
Maximum Payload	1000+ lbs. with reduced		
	accuracy and performance		
Standard	On-axis optical payload; no		
Configuration	man-on-the-mount		
Optional	On-axis optics with off-axis		
Configuration	radar		
Azimuth Torque	1500 ft lbs		
Elevation Torque	2 x 300 ft lbs		
Azimuth, Elevation	100+ degrees/sec ² with		
Acceleration	nominal payload		
Azimuth, Elevation	100+ degrees/sec		
Velocity			
Weight	6500 lb. trailer-mounted		
	pedestal with single axle		
Dimensions	123L x 85W x 80H inches (plus		
	21" trailer tongue)		
Encoder	24-bit absolute position		
	optical encoder with 23-bit		
	quadrature output for velocity		

Features:

 Fully Integrated Pedestal and Sensor Control Software •Real-Time TSPI data output •Single station solution •Sensors and System Time-Synchronized to IRIG @ 250 Hz Dual gate auto-tracking with Camera Link @ 250 Hz Remote Control Console Digital Servo Amplifier

Calibration	Turn &	Star	0
	Dump	Calibration	
No Radar	Х	x	
Radar on Top		х	3. 3
Radar on Side	Х	x	

MBOTS Key Components

Test Value Quantification

*From "Test and Evaluation Resource Allocation Using Uncertainty Reduction as a Measure of Test Value," E. A. Bjorkman, 2012

Systematic Error Sources

- Zero Offset
- Collimation
- Tilt
- Vertical Deflection
- Droop
- Non-orthogonality
- Parallax
- Refraction

Model Assumptions

• 2D model

Elevation angle assumed constant, zero degrees
Target follows straight path

- CKEM target visible and tracked throughout trajectory
 - 1.5m length, solid-fuel rocket
 - Velocity: 6.5+ Mach