

System of

Systems

2013
(

Optimizing the Test Space for MultiBand Optical Tracking Systems (MBOTS)

Michael Horii
ρ

Overview

- Multi-Band Optical Tracking Systems (MBOTS)
- Predictive model for MBOTS performance
- Definition of p(test success)

What are MBOTS?

Capabilities

- Track objects
- Record
- High-speed images
- Pointing angles
- Time-space-position info (TSPI)
- Spectral data

Applications

- Laser designation
- Missile testing
- Product Evaluation
- Satellite tracking
- Fire Control
- Surveillance

Test Scenario Geometry

Requirement: Estimate target position to within 1 meter

Error Defined

Uncertainty and Viewing Geometry

Favorable

Stressing

As γ decreases, area of overlap (uncertainty) increases

Monte Carlo Approach

- Draw angles from

$$
\begin{aligned}
& \alpha_{i} \sim N\left(\mu=\alpha, \sigma^{2}\right), i=1,2, \ldots, n \\
& \beta_{i} \sim N\left(\mu=\beta, \sigma^{2}\right), i=1,2, \ldots, n
\end{aligned}
$$

- Determine intersection point between lines-of-sight
- Calculate Euclidean distance between true and estimated target position

Visualizing Positional Uncertainty

Euclidean Distance Distributions

Target at midpoint

Target across
trajectory

What do we want to optimize?

Target at
starting point

Positional Accuracy vs. Error Budget

Determining Optimal Site Placements

Target at Midpoint of Trajectory

Target at Starting
Point of Trajectory

Favors the edges, Reduced accuracy

Optimal Site Placement Across Trajectory

Optimal MBOTS location:

$$
\begin{gathered}
\left(x_{1}, y_{1}\right)=(2.1 \mathrm{~km}, 1.8 \mathrm{~km}) \\
\text { and }
\end{gathered}
$$

$$
\left(x_{2}, y_{2}\right)=(7.9 \mathrm{~km}, 1.8 \mathrm{~km})
$$

MBOTS Positional Accuracy: Predicted vs. Actual

* Data from a site-acceptance test for the Photo-Sonics Mobile MultiSpectral TSPI System (MMTS), White Sands Missile Range, 2012

How To Define Success?

Position error $\leq 1 \mathrm{~m}$

Way Forward

- MBOTS system accuracy model
- Future enhancements
- 6 degrees-of-freedom (DOF) trajectory propagator to support motion dynamics, complex trajectories
- Modeling of optics, auto-tracker
- Approach is extensible to multiple MBOTS
- Approach for defining p(test success)
- Result may be used as evidence for T\&E resource allocation

References

1. Downey, G.; Stockum, L. "Electro-Optical Tracking Systems Considerations," Acquisition, Tracking and Pointing III, Vol. 1111, 1989.
2. Joint Range Instrumentation Accuracy Improvement Group, "IRIG Optical Tracking Systems Calibration Catalog," Document 755-99, Secretariat, Range Commanders Council, White Sands Missile Range, New Mexico, February 1999.
3. Das, R.K. "Test and Evaluation of Tactical Missile System Using Electro-Optical Tracking System," ITEA Journal, 30, 2009, 143-148.

Mobile Multi-Spectral TSPI System (MMTS)

Specifications

Nominal Payload	600 lbs.
Maximum Payload	$1000+$ lbs. with reduced accuracy and performance
Standard Configuration	On-axis optical payload; no man-on-the-mount
Optional Configuration	On-axis optics with off-axis radar
Azimuth Torque	1500 ft lbs
Elevation Torque	2×300 ft lbs
Azimuth, Elevation Acceleration	$100+$ degrees/sec ${ }^{2}$ with nominal payload
Azimuth, Elevation Velocity	$100+$ degrees/sec 6edestal with single axle
Weight	$123 \mathrm{~L} \times 85 \mathrm{~W} \times 80 \mathrm{H}$ inches (plus $21^{\prime \prime}$ trailer tongue)
Dimensions	24 -bit absolute position optical encoder with 23 -bit quadrature output for velocity
Encoder	

Features:

-Fully Integrated Pedestal and Sensor Control Software -Real-Time TSPI data output - Single station solution -Sensors and System TimeSynchronized to IRIG @ 250 Hz
-Dual gate auto-tracking with Camera Link @ 250 Hz -Remote Control Console -Digital Servo Amplifier

Calibration	 Dump	Star Calibration	
No Radar	x	x	
Radar on Top		x	
Radar on Side	x	x	

MBOTS Key Components

Test Value Quantification

*From "Test and Evaluation Resource Allocation Using Uncertainty Reduction as a Measure of Test Value," E. A. Bjorkman, 2012

Systematic Error Sources

- Zero Offset
- Collimation
- Tilt
- Vertical Deflection
- Droop
- Non-orthogonality
- Parallax
- Refraction

Model Assumptions

- 2D model
- Elevation angle assumed constant, zero degrees
- Target follows straight path
- CKEM target visible and tracked throughout trajectory
- 1.5m length, solid-fuel rocket
- Velocity: 6.5+ Mach

