
T E C H N O T E S

ITEA Journal • June/July 2007 9

point operations, thus (intrinsically) limiting the appeal
for programming broader applications found in the T&E
community.

A relative newcomer to general-purpose programming
is the GPU (see Figure 1). A GPU is that fancy graphics
card that costs a few hundred dollars for a PC to make

video games vivid and realistic. The popular association of
GPUs is with accelerating graphics, but the new architec-
tures from manufactures such as NVIDIA Corporation
and ATI are capable of performing general-purpose com-
puting in addition to making animated monsters look
more life-like. For a good overview of this exciting area,
visit http://www.gpgpu.org.

There are two approaches to consider when program-
ming a GPU for general-purpose computing.The first is to
pose the problem as a graphics problem and solve it using a
graphics language such as OpenGL (see http://opengl.org) or
DirectX (http://www.microsoft.com/directX). The second
approach is to program the GPU directly. But be cau-
tioned: This is not a conventional method of pro-
gramming, so be prepared to think about the applica-
tion in some new ways, because what is needed today
to program GPUs may not be what is needed in the
future.

The first approach to using GPUs is to recast the
general-purpose application as a graphics problem,
which is not always possible or simple to do. OpenGL
or DirectX calls can be employed to define the geome-

n recent months, there has been much discussion
about new advancements in processor technolo-
gy that promise huge performance returns for a
small investment. Field programmable gate

arrays (FPGAs), cell processors and graphics processor
units (GPUs) are all the rage. So, one question is, “What
are the salient features of this new technology?” But per-
haps the most important questions, however, are: “What
does all of this mean to the test and evaluation (T&E)
community? Should these new technologies be adopted,
put on the top shelf until the technology matures, or
[should they be] written off altogether?”

FPGAs, invented around 1984 by Ross Freeman,
Xilinx cofounder, have a relatively large number of pro-
grammable logic components with programmable inter-
connects. The logic components can be programmed to
duplicate basic logic functions (AND, OR, XOR and
NOT) or grouped to form simple mathematical functions
such as integer addition. A complex circuit can be con-
structed from logic and memory components similar to a
programmable breadboard. These components can be
reprogrammed after the manufacturing process; thus,
they are field programmable.

Programming an FPGA is accomplished using hard-
ware description language, which is very similar to assem-
bly language programming for general-purpose central
processing units (CPUs). The software developer must be
aware of hardware timings, interrupts, signals, thread syn-
chronization and other interfaces at the hardware level.
Several research efforts are underway to develop higher-
level languages for programming FPGAs to make soft-
ware development easier and faster.

Typical applications that use FPGAs are cryptography,
specialized routers or network edge devices, and medical
imaging. These applications can be characterized as those
that perform a substantial amount of computation with a
small amount of memory, such as the Fast Fourier
Transform (FFT). Logic designs that are independent of
one another execute in parallel (up to available memory);
therefore, multiple FFTs, for example, execute in the
same time to execute just one. In this sense, FPGAs are
highly scalable. The down side of FPGAs is that limited
onboard memory and input/output (IO) bandwidth
restricts scalability. FPGAs also do not support floating

A Brief Look at FPGAs, GPUs and Cell Processors
Michael L. Stokes

Ohio Supercomputer Center, Columbus, Ohio

I

Figure 1. NVIDIA and ATI graphics processor units (GPUs)

10 ITEA Journal • June/July 2007

T E C H N O T E S

try, then used to query the geometry to discover dis-
tances, intersections and other properties. The so-called
Line-of-sight program has been solved this way using
various techniques available in OpenGL. This approach
is very nice when it works because GPUs are already
optimized for OpenGL and DirectX in hardware. The
programmer has to know little or nothing about the
graphics accelerator or its capabilities. However, this
model sometimes does not provide the programmer
with enough flexibility. Graphics Language Shading
Library is a relatively new capability in OpenGL (as of
OpenGL 2.0) that allows additional instructions to be
inserted in the vertex and pixel shader component of
the OpenGL pipeline. While this offers substantial
flexibility over the simple graphics API, the method
still requires that the problem be cast in a geometric
format. So, what if this is not possible?

One solution is the introduction of the Compute
Unified Device Architecture (CUDA) (http://developer.
nvidia.com/object/cuda.html) by NVIDIA. The CUDA
environment is supported on the NVIDIA G8X and
newer graphics adapters, and includes the CUDA
toolkit for the Linux and Windows Operating Systems.
This toolkit allows the user to access the GPU hardware
directly.

The GPU hardware currently sports 16 multiproces-
sors. Each multiprocessor has a set of eight 32-bit sub-
processors with a Single Instruction Multiple Data
architecture shared instruction unit, or a total of 128
processors. Each multiprocessor has a set of 32-bit reg-
isters per processor, on-chip shared memory with fast
access to the processors, a read-only constant cache
memory, and a read-only texture cache. In addition, the
device contains 768 MB of device memory with much
slower access speeds than shared memory. Parallelism is
achieved by associating up to 32 threads of execution in
a group called a warp, of which up to 16 warps make up
a block. Each multiprocessor executes one or more
block(s) in parallel.

The peak performance from the NVIDIA 8800 is
around 300+ GFLOPS for a unit that lists for around
$600—a large performance-to-price ratio when compared
to current-day high-performance computing (HPC).
However, the GPU is not without its faults. In order to
obtain the full throughput of the device, it is necessary to
optimize onboard memory and keep the processors fully
engaged, which can be difficult for some applications.
There is an alternative to the GPU. It is called a cell proces-

sor (see Figure 2), and it is one of the hottest options for
accelerating HPC applications.

“Though sold as a game console, what will in fact enter
the home is a Cell-based computer,” according to Sony’s
Ken Kutaragi, in talking about Sony’s PlayStation 3 (PS3).
The Cell processor was designed from the very beginning
to be a general-purpose computer, not as a gaming console,
as often rumored. Most companies would have used spe-
cialized automated software in the design process, but IBM,
the designer of the Cell processor (or simply Cell), decided
to perform the design by hand, a choice costing millions
more dollars but resulting in a more compact and power-
efficient design. The resulting design is nothing less than
stellar in the opinion of most industry observers due to its
simplified design and power efficiency.

The architecture of the Cell is unique, although it shares
a lot in common with older vector supercomputers (recall
the Cray 1).The Cell can perform at rates similar to or bet-
ter than GPUs, but it is much easier to program because it
was designed for general-purpose application. A Cell is
composed of a number of elements as shown in Figure 3
(next page): one Power Processor Element (PPE), eight
Synergistic Processor Elements (SPEs), one Element
Interconnect Bus (EIB), one Direct Memory Access
Controller (DMAC), two Rambus XDR memory con-
trollers and one Rambus FlexIO interface.

The PPE primarily initiates and monitors jobs that run
on the SPEs.The PPE runs the basic operating system and
parts of the application, but compute-intensive components
of the operating system and the applications are offloaded to
the SPEs. The PPE is a 64-bit Power Architecture processor
compatible with PowerPC binaries. The downside of this
design is that one can expect poor performance when exe-
cuting logic-heavy instructions, because it is an in-order
processor (it does not pre-compute logic branches).

Figure 2. A
cell with one
Power
Processor
Element
(PPE) and
eight
Synergistic
Processor
Elements
(SPEs)

T E C H N O T E S

ITEA Journal • June/July 2007 11

SPEs, operating at clock speeds up to 4 GHz, contain
128 x 128 bit registers, along with 4 single precision float-
ing point units with a maximum peak performance of 32
GFLOPS, 4 integer units capable of 32 GFLOPS, and a
256 K local store instead of a cache. Each SPE consumes less
than 5 Watts at 4 GHz, making it a better performer than
the current batch of GPUs (some of which recommend a
500 W or larger power supply). Like the PPE, SPEs are
vector processors, namely, they perform multiple operations
simultaneously with a single instruction. Each SPE is capa-
ble of 4 x 32 bit operations per cycle (8 if multiply-adds are
included).The double precision calculations are Institute of
Electrical and Electronics Engineers (IEEE) standard,
whereas the single precision calculations are not, which is
supposedly faster.

In the current implementation of the PS3, double pre-
cision calculations share the computational area of the sin-
gle precision floating units. This saves a lot of room on the
silicon, but it results in a large penalty in performance, or
around 25 double precision GFLOPS at 4 Ghz. For a
gaming box such as the PS3, double precision is not
important, but IBM has hinted that future versions of the
Cell might include a full-speed, double precision floating

point unit that will perform
at rates as high as integer per-
formance, or 256 GLOPS
per SPE. SPEs can execute
instructions in parallel in
synchronized loops, or can
also be chained together,
forming a stream processor
through a process called
pipelining. It is through
pipelining that the Cell is
capable of achieving near-
peak performance.

In summary, as has always
been the case, the choice of
which acceleration architec-
ture is best for any specific
application has to be exam-
ined for each individual case.
FPGAs, in general, are a
good choice when seeking a
hardware or embedded solu-
tion, while GPUs and Cells
appear to be better choices for
modeling and simulation and

simulation and training applications. GPUs are well-suited
for applications that can be cast in the form of a graphics
solution and some general-purpose applications, while the
Cell architecture seems to be the best choice when com-
plex, general-purpose solutions are required. ❏

MICHAEL L. STOKES is an engineer that works for the Ohio
Supercomputer Center, but resides at Redstone Technical Test
Center (RTTC), Redstone Arsenal, Alabama. Funded by the
High Performance Computing Modernization Program Office
(HPCMPO) under the PET program, he works in the area of
testing and evaluation. His current area of research is in the
development of real-time ray tracers for multi- and hyperspectral
synthetic scene injection. He received his doctorate degree in engi-
neering science and mechanics at the University of Tennessee,
Knoxville, in 1991. Comments and questions can be directed to
him at michael.l.stokes@us.army.mil,Room 27,Building 4500,
Redstone Arsenal, Alabama 35898.

Acknowledgment
Images/photographs in this article are copyrighted by, and

printed with written permission from, Nicholas Blachford. The
author gratefully acknowledges Blachford’s contributions.

Figure 3. Cell processor architecture

