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Cybersecurity

;--have i been pwned?

Checkifyou have an account that has been compromised in data breach

Marriott’s data breach may be the
biggest in history. Now it’s facing
multiple class-action lawsuits.

being sued for all

failing to protect more than 300 million
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Cybersecurity
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Cybersecurity

Can Al Become Our New
Cybersecurity Sheriff?

i Naveen Joshi Contributor
® As threats have grown and hackers have developed "K e WORLD contautercresn ©

Al & Big Data

increasingly sophisticated strategies for accessing
sensitive data, commercial/government/etc.
organizations have started looking to deep learning
to aid in prevention and detection.

® This talk is designed to cover why deep learning is an
attractive avenue and why we should be careful of its
hidden flaws.
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What is Machine Learning?

® MLis afield of algorithm development wherein data is used to tune parameters/weights towards some task (like
classification). We are going to discuss supervised ML, meaning the data is labeled.

Starting Point Training Step

Approved for Public Release Deep Learning

Trained Model Testing Step

— Test Queries

A

Classification
class(A)=x

class(B)=x

class(C)=o



Features

® Traditionally, features are extracted from data
samples to focus the training/testing of the machine
learning model.
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Features

® Traditionally, features are extracted from data
samples to focus the training/testing of the machine
learning model.

® How these features are designed and the attributes
they capture is of great interest; the more
discriminatory they are, the easier a classifier will
train and the better the algorithm will do.

Wikipedia
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Features

Poor Separation

® Traditionally, features are extracted from data
samples to focus the training/testing of the machine
learning model.

® How these features are designed and the attributes
they capture is of great interest; the more
discriminatory they are, the easier a classifier will ©

: . . ¢0°
train and the better the algorithm will do. « 6

EARS

Good Separation
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Deep Learning: Let the Machine Decide Features

® |nstead of human developed features, why not let the machine decipher its own set of discriminatory
features.

Low-Level Mid-Level| |High-Levell Trainable
— — —
Feature Feature Feature Classifier
4 'Y

4

Yan LeCunn
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Deep Learning: Let the Machine Decide Features

® |nstead of human developed features, why not let the machine decipher its own set of discriminatory
features.

HIDDEN

OUTPUT

(=]

towardsdatascience.com
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Deep Learning: Let the Machine Decide Features

® |nstead of human developed features, why not let the machine decipher its own set of discriminatory
features.

Stanford CS 231
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Deep Learning & Its Features

® The strength of deep learning/neural networks is in
the auto-feature-generation. Circumventing human

bias allows a direct path to a seemingly optimal
solution.

Approved for Public Release Deep Learning

Delving Deep into Rectifiers:

Surpassing Human-Level P

KaimingHe ~ Xiangyu Zhang

on ImageNet C

Shaoging Ren  Jian Sun

Microsoft Research

{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Abstract

Rectified activation wnits (rectifiers) are essential for
state-of-the-art meural networks. In this work, we study
reciifier neural networks for image classification from two

spects. First, we propose a Parametric Rectified Linear
Unit (PReLU) that generalizes the traditional rectified uni.
PReLU improves model ftting with nearly zero extra com-
putational cost and litle overfiting risk. Second, we de-
rive a robust initialization method that particularly consid-
ers the reciifier nonlinearities. This method enables us 10
train extremely deep rectified models directly from scratch
and 1o investigare decper or wider network architeciures.

and the use of smaller strides [33, 24, 2, 25]), new non-
linear activations [21, 20, 34, 19, 27, 9], and sophisti-
cated layer designs [29, 111 On the other hand, bet-
ter generalization is achieved by effective regularization
techniques [12, 26, 9, 31, aggressive data augmentation
16, 13,25, 29], and large-scale data [4, 22]

Among these advances, the rectifier neuron [21. 8, 20,
341, e.g. Rectified Lincar Unit (ReLU). is one of several
keys to the recent success of deep networks [16]. It expe-
dites convergence of the training procedure [16] and leads

[21,8,20,
like units. Despite the prevalence of rectifier networks,
recent of models [33, 24, 11, 25, 20] and

‘Based on our PReLU networks (PReLU-ners). we achieve
4.94% t0p-5 test error on the ImageNer 2012 classifica-
tion dataset. This is a 26% relative improvement over the
ILSVRC 2014 winner (GoogLeNet, 6.66% [29]). To our
knnowledge, our resulf s the firstto surpass humant-level per-
Jormance (5.1%, [22) on this visual recognition challenge.

theoretical guidelines for training them [7, 23] have rarely
focused on the properties of the rectifiers.

In this paper, we investigate neural networks from two
aspects particularly driven by the rectifiers.  First, we
propose a new generalization of ReLU, which we call

He et al CVPR 2015



Deep Learning & Its Features

Query A Network N

® The strength of deep learning/neural networks is in
the auto-feature-generation. Circumventing human
bias allows a direct path to a seemingly optimal : .
solution. What is the network looking at?
e Without human intervention, though, we have a Why those features?

black box classifier. Are the features relevant?
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The Rest of this Talk...

® For the rest of this talk, we are going to discuss ways in which deep learning/neural networks can fooled.

® Key context: deep learning is the state-of-the-art. It is difficult to justify using SVMs/random forests/etc. for
many problems when a neural network can significantly improve performance.

® Note as well that these other machine learning strategies can also be fooled - many in the exact same way.
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® Deep Learning Gone Wrong
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Setting

® Assume for the following that we have a well-trained neural network for a classification task.
® |tis easiest to illustrate the following ideas with images, but note that they apply for any domain.
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What Is the Network Looking For?

® We did not constrain the network to filters that we can understand.
® Research has shown that deformations of objects into gibberish can still earn high scores from a neural network.

The images below all have > 99% confidence from a well-trained model.

==
obelisk comic book medicine slot car wheel (cmputer hand blower dial
chest keyboard telephone

pinwheel  crossword punching bag
puzzle

paddle vacuum  accordion screwdriver photocopier strawberry tile roof sklmask
fourposter  African  seasnake hairslide nematode schoolbus  panpipe traffic light

chameleon

Nguyen et al CVPR 2015
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What Is the Network Looking For?

® Even second-hand, these images fool state-of-the-art networks.
ee000 Verizon & 1:29 AM 9 LN ee Verizon E 3 ooo Verizon &
SPOTTER
80% Digital Clock 51% Green Snake 24% Stethoscope
13% Brain Coral % Cup

ARRRRRN
&

Nguyen et al CVPR 2015
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How robust is the model to being fooled?

® What if someone wants to actively fool a network? What if we have an adversarial attack?

+.007 x

. T +
@ sen(Val0.29)  ion(V,J(6,2,1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure 1: A demonstration of fast adversarial example generation applied to GoogLeNet (Szegedy
et al., 2014a) on ImageNet. By adding an imperceptibly small vector whose elements are equal to
the sign of the elements of the gradient of the cost function with respect to the input, we can change
GoogLeNet’s classification of the image. Here our € of .007 corresponds to the magnitude of the
smallest bit of an 8 bit image encoding after GoogLeNet’s conversion to real numbers.

Goodfellow et al ICLR 2014
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How Attacks Work

Input

Model Activations

Output

Legitimate

Adversarial

Papernot et al 2016 arXiv
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ustrated in this

= = Task decision boundary $R Training points for class 1
— Model decision boundary © Training points for class 2
98 Testing points for olass 1 88 Adversarial examples for class 1

GoodFellow et al ACM Magazine 2018
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White Box Attocks

® White box attack:the adversary knows the model parameters.

action taken: down action taken: noop
original input adversarial input

Huang et al ICLR 2017
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Block Box Attacks

® Black box attacks: the adversary doesn’t know model parameters.
® These attacks are harder to deal with than white box attacks.

Model A Adversarial Attack Function Qa(+)
Model B > Utilize Model Parameters to Get Perturbations < Adversarial Attack Function Qg (-)

Model C Adversarial Attack Function Q¢ (+)

Test Query X —> Generate Adversary Qu (X) — classa (Qa (X)) # classa (X)

/ Generate Adversary Q (X)
Query X \j classg (Q4 (X)) # classg(X)

classc(Qa (X)) # classc(X)
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Why Do Black Box Attacks Work?

® Akey concept of modern NN theory is transfer learning, the ability to share weights among similar tasks.

® Sharing weights makes training with smaller data sets possible, but it also means that similar models will
produce similar weights — black box attacks.

Training images I Source task I Source task labels
Convolutional layers  Fully-connected layers African elephant
e
1: Feature = . Wall clock
learning C1-C2-C3-C4-C5 [ Fce b Fc7 FCs 7
4096 or

6144-dim & | Green snake
vector

/
( e . .
| . Yorkshire terrier
2 Feature Transfer -
B

transfer parameters

3: Classifier M Background
1 C1-C2-C3-C4-C5 FC6 FC7 FCa —> FCb —»
learning 4096 or
6144-dim W Person
9216-dim 4096 or vector
vector  6144-dim ﬂ "
TV/monitor
Training i Slid h vector New adaptation
raining images  Sliding patches
€ € 8P Target task layers trained Target task labels
on target task
Oquab et al CVPR 2014
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© What to Do?
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Protection from White Box Attacks

® We can prevent white box attacks by training with adversarial examples.
® Though simple, this is an effective measure.

Figure 3: Weight visualizations of maxout networks trained on MNIST. Each row shows the filters
for a single maxout unit. Left) Naively trained model. Right) Model with adversarial training.

Goodfellow et al ICLR 2015
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Protection from Black Box Attacks

“Panda” “Dog”

(Correct) (Wrong)
® Similar to white box, we can use train several models

Logits I] || || |_,<_H || | ||
and train using a mixed batch of adversarial images. I

® This seems to work but is unsatisfying; there are

other more sophisticated actions to take, but this is

an open question. . i b

Original Image Adversarial Image

Liao et al CVPR 2018
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Outline

O Summary
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® Deep learning is the state-of-the-art. It’s unavoidably the best choice for most classification tasks.

It’s a black box by design. We want the machine to craft its own features even though we won’t be able to
decipher their meaning.

Adversarial images show the double edged sword of this feature generation. The incredible performance comes
with vulnerabilities.

® For cybersecurity, we need to look into neural networks as an option but should be wary of their problem cases.
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® Appendix
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How the Gibberish Images are Made

State-of-the-art DNNs can recognize P But DNNs are also easily fooled: images can be produced that are unrecognizable
real images with high confidence to humans, but DNNs believe with 99.99% certainty are natural objects

Input
Fitness Evaluation .
Mutation

\

\

Evolved images \\ A

< O

Evolutionary Crossover

Algorithm
- :o\/
Label and Score

| I T Selection

Output

Deep Neural Network

Nguyen et al CVPR 2015
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Driverless Cars

Logo Attacks
Original Adversarial U Rl
y | Bicycle Crowing IR 0.59 >\ stop I 100 | ——\ stop I 1 00

1. Original image

Logo "

attack

p> Priority road [ 099 - ‘Speed Himit (30) I 1 00
Specd limit (30 098 Priority road 092
sop| o - S 091

‘ wa h Others|

28 Priority road I 099 > Stop I 100 Stop I 1 00
Speed limit (30) [ 098 Priority road | 096 wa
Stop| 10 -OI

(b) Classification of Custom Sign attack examples. The adversarial examples are classified with high confidence as a real traffic
sign, in spite of being custom made signs.

Sitawarin et al ACM CCS 2018

- ¢«

—

5

Custom  Adversarial
Sign atiack Traffic Sign

T — = ---- —--- Noovertaking. I 100
1 | 2.a Find mask to limit <> wa
| adversarial perturbation w :
1 o sign arcas (Canny edge a !
| detection + Fill holes) network's input size !
i " (a) Classification of Logo attack examples. The adversarial examples are classified with high confidence as a real traffic sign, in
H ‘ spite of being out of the dataset.
I
Blank Sign  Traffic Sign | 2c th random Batch of randomly Contom i Atk
! transformed samples
Physically robust —{ Optimization Output Find optimal el A
adversarial example | (low-resa perturbation with Specd it () I 100
! examples) Adam optimizer o
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