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Abstract: This work explores the capabilities of generative adversarial networks (GANs) in image 

generation using transfer learning on limited datasets assimilated from Instagram and the creation 

of a pipeline of tools to intake and filter image datasets compatible with GAN training 

requirements. Transfer learning is a technique that leverages a network pretrained on a different, 

often larger, dataset. Transfer learning provides benefits in training time, computing requirements, 

and small dataset compatibility. This work demonstrates the potential of pretrained networks in 

adapting to new domains of data, even when retraining on small datasets.  
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1. Introduction 

Generative modeling is the unsupervised learning task of modeling a distribution of input training 

data so that samples synthesized from the learned model resemble plausible samples from the real 

distribution [1]. Generative adversarial networks (GANs) offer an innovative solution to this task 

with an architecture of a generator network and a discriminator network pitted against one another 

as adversaries (Figure 1). The generator is tasked with learning the distribution of a real dataset to 

generate synthetic samples mimicking the training data. The discriminator is tasked with learning 

to correctly classify real and synthetic samples while providing feedback to the generator on its 

success [2]. Random noise is often fed into the generator as a starting point for generating the 

artificial samples, although that is not always the case. 

Together, these networks and their loss functions compete in a two-player minimax game. While 

the discriminator learns to maximize its classification successes, the generator learns to generate 

samples that minimize the discriminator’s classification successes. First, the distribution from 

Figure 1. Basic generative adversarial network structure [17]. 
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which the input random noise is created is defined with a prior 𝑝𝑧(𝑧). The nonlinear function that 

maps input to the data space is denoted 𝐺(𝑍). The resulting distribution of generated data, 𝑝𝑔, is 

learned to resemble the distribution of the training data, 𝑝𝑑𝑎𝑡𝑎. Lastly, the probability that a data 

point is from the training dataset rather than the generated one is denoted 𝐷(𝑥). Then, the minimax 

loss equation is defined with the value function 𝑉(𝐺,𝐷), as described in the function [2] 

min
𝐺

max
𝐷

𝑉 (𝐺, 𝐷) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎(𝑥)𝑙𝑜𝑔(𝐷(𝑥)) + 𝐸𝑧∼𝑝𝑧(𝑧)𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))). 

Currently, image data is the most popular domain for GANs training [3]. Not only was the first 

GAN trained with image data, but their most well-known and exciting applications typically 

involve some form of image synthesis. Among such foci include image generation for datasets [2], 

photo-realistic human face generation [4], and text-to-image generation [5]. 

In many published works, GANs are trained from scratch, but doing so is difficult. Training on 

large datasets over extended periods can prove costly in time and computation, especially with 

image data [4]. According to NVIDIA, the ideal GAN is trained with 50,000 to 100,000 images. 

However, arbitrarily decreasing the size of the dataset to save computational resources often results 

in various training failures. The most common failure is when the discriminator overfits to the 

data, becoming overly adept at classifying real and generated images, forcing the generator to 

synthesize nonsense to fool the discriminator [6]. Additionally, datasets from some domains may 

be limited by specificity or an abundance of samples to train from in real life. 

A proposed solution to balance training failure minimization and cost efficiency is to leverage 

transfer learning to train a GAN on the desired target dataset. Transfer learning is the technique of 

applying a model that has been previously trained on one task or domain of data to another task or 

domain. In the context of GANs and image data, a pretrained generator from a GAN has already 

learned the weights of key features from the images of a source dataset, such as edges, curves, 

coloration, and lighting patterns. Ideally, the prior knowledge learned from the source domain 

enables the network to adapt to the target dataset when it continues training, requiring less data 

from the target domain and a fraction of the iterations of training from scratch while achieving 

similar levels of performance and without encountering mode failures. In addition, the relaxed 

requirements on data and training time also enable more training runs, observing GAN training 

behavior and testing GAN effectiveness in a more efficient manner. 

This work’s primary objective is to evaluate the efficiency and effectiveness of transfer learning 

to train GANs on small datasets by exploring the method’s successes and limitations under various 

combinations of source and target domains. A secondary objective is to assess the viability of using 

Instagram as an effective platform to assemble datasets for transfer learning. 
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2. Related Work 

2.1. GANs  

Previous approaches to generative modeling in the machine learning community consist of single-

network architectures, such as deep belief networks or stacked convolutional autoencoders. The 

viability of the novel GAN two-network architecture for image generation is demonstrated through 

experiments on the MNIST, CIFAR-10, and the Toronto Face Database datasets [2]. In the early 

results, the trained generator synthesized images that are reasonably representative of the real 

samples (Figure 2), demonstrating the potential of GANs to be competitive with previous methods. 

Gaining mainstream attention, GANs have become the state-of-the-art approach to generative 

modeling using machine learning. 

2.2. StyleGAN 

Although many variations of the original GAN architecture have achieved successful results, a 

persistent challenge was an inability to control the image synthesis process [7]. Traditional 

generators take initial latent code defined by a random distribution in the input layer only. In many 

datasets, the distribution of features is non-uniform, so random inputs from latent space 𝑍 under-

represent more common features while over-representing ones less prominent in the data. To 

address this issue (Figure 3b), StyleGAN models take advantage of a standalone mapping network 

that maps the random latent vectors from 𝑍 to an intermediate latent space, 𝑊, (Figure 3c) making 

the features of the training dataset resemble the original data (Figure 3a) more closely and easier 

for the generator to learn. 

Figure 2. Images generated by generative adversarial networks from training on CIFAR-10 (left) and TFD 

(right) datasets [2]. 

Figure 3. An illustration of the effects of the mapping network [7].  
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The name StyleGAN refers to the learned affine transformations applied to the vectors in 𝑊 to 

specialize them into various styles “to control adaptive instance normalization” (AdaIN) 

operations after each convolution operation in the generator network (Figure 4). As the image is 

up-sampled, styles are chosen and applied accordingly, resulting in a generator capable of 

producing photorealistic images with fine features that can be tuned and adjusted. Furthermore, 

style mixing allows for remarkable variation in generated samples [7]. 

3. Materials and Methods 

The current work involves two main efforts: 1) a data pipeline to scrape, filter, and augment images 

to assemble training datasets for transfer learning and 2) transfer learning experiments to 

investigate the impact of various combinations of source networks and target datasets. Model 

performance is evaluated with the Fréchet Inception Distance (FID) score, which measures the 

similarity between two datasets; lower FID scores correspond to greater similarity. In the context 

of GANs, the FID score is used to assess the realism of generated images by comparing a set of 

synthesized images against its real counterpart. Training runs are measured in kimg units of one 

thousand images passing through the generation-discrimination operation. 

3.1. Data Pipeline 

The data pipeline constructed for this work includes tools to scrape images given a search criterion 

and then run images through filters, discarding unsuitable images and resulting in a small set of 

ideal samples for training the GAN. The transfer learning experiments involve training the 

networks on datasets topically different from those on which they were previously trained. The 

ideal data source is a repository of public images with a built-in method of searching for a topic. 

Figure 4. Traditional GAN structure (a) compared to that of StyleGAN (b) with mapping network to create an 

intermediate latent space, 𝑊 [7].  
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Instagram is a candidate platform for scraping images for datasets as its hashtag search function 

provides a straightforward method to categorize raw image data by hashtag (Figure 5). 

Instaloader is a Python package providing the functionality to scrape data from Instagram [8]. It 

uses the packages Requests and urllib to access posts by URL and download the image files 

contained in them. The scraper tool is written as a wrapper class that leverages Instaloader 

functionality to automate the data collection process in a streamlined manner. Passable parameters 

specify subdirectory organization options and the target hashtags and number of posts to download 

from, supplying considerable modularity over dataset formation, including its contents and 

categorization. A value of 1,000 posts to scrape from was selected, yielding a range of 1,500 to 

3,000 images per hashtag as a given post may contain multiple images. 

The scraping process faced various setbacks. Instaloader’s built-in Requests rate-controller class 

would temporarily lock the accounts from downloading post media to avoid Instagram automation 

detection, slowing data collection for extended periods of time. Additionally, hashtags were less 

precise than anticipated, making the collected data of some hashtags far too varied and ambiguous 

for training purposes where using a dataset of similar images is crucial. For example, Instagram 

users often tag posts with many hashtags regardless of topic relevance to the post media, and not 

all media in a multi-image post is relevant to each hashtag listed. To remedy the latter issue, a 

manual examination of a hashtag was performed prior to use for scraping. 

Training GANs with image data requires a standardized dataset of suitable images. For this work, 

suitable images are those of sufficient quality and without elements that the generator will have 

difficulty reproducing, namely text and human faces [9]. Training the GAN with images of low 

resolution or significant blurring leads to the generation of blurry samples. Without abundant data 

and a lengthy training process, neither of which are present in these experiments, the inclusion of 

text and human faces leads to the generator’s attempts to generate them, disrupting the 

photorealism of images for topics without human faces or text. A data filtration pipeline was 

devised to iterate through collected images and discard those that did not pass various thresholds 

of target criteria; examples of discarded images are in Figure 6. These filters included: 

• valid image file format; 

• pixel height and widths are both within 80% of a target resolution; 

• sufficiently sharp images; 

• no grayscale images; 

• no significant or prominent bodies of text; and 

• no visible human faces. 

Figure 5. Examples of images scraped by Instaloader with #latteart hashtag. 



 

Distribution Statement “A” (Approved for Public Release, Distribution Unlimited) 

 

Upon passing all filters, images are cropped, resized, and saved as new training samples (Figure 

7). Numerous packages are used to process the image both in the filtering and resize operations. 

Pillow and OpenCV are two general-purpose Python modules used to read, edit, and save image 

data. For the facial recognition filter, a Python module provides functionality to detect presence, 

location, and recurrence of human faces [10]. For the text recognition filter, OpenCV’s Frozen 

Efficient and Accurate Scene Text (EAST) Detection deep learning model provides creative ways 

to identify text and functionality to draw boxes over the identified text, used for threshold tuning 

and debugging. [11].  

Fine-tuning of various filter thresholds remained a challenge. The pipeline would filter too harshly 

at some checkpoints and too leniently at others, rejecting good or accepting poor training samples. 

For example, the Frozen EAST Detection network would occasionally falsely classify parts of the 

image as text, when in fact the image simply contains dark edges against a light background 

(Figure 8). Manual discernment on a variety of classifications was required to tune parameters on 

this and other filters. 

Figure 6. Images of #fighterjet that would be rejected for (left to right) low resolution, blurriness, prominent 

text, and human faces.  

Figure 7. A diagram modified from Digital Ocean [16] of the current data filtration pipeline.  

Figure 8. Green boxes overlay all instances of text detection, true or false. 
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3.2. Augmentation 

Data augmentation is a method of artificially increasing the number of training samples by random 

alteration of the data. Without sufficient data to learn from, previous work has shown that the 

discriminator network overfits and effectively memorizes the real images [12]. Adaptive 

discriminator augmentation (ADA) is an implementation introduced with StyleGAN2-ada. ADA 

starts at the beginning of the training job, applying alterations such as isotropic image scaling, 

random 90-degree rotations, and color transformations, induced by an augmentation probability 

hyperparameter. Data augmentation is necessary for a typical Instagram dataset containing 500 to 

1,500 images. Preliminary training runs were conducted to observe the impact of augmentation 

methods. Runs with ADA augmentation consistently improved, while runs with both fixed and no 

augmentation did well initially but got worse as training went on, and no augmentation resulted in 

FID scores substantially worse than no training at all (Figure 9). 

3.3. Training and Hyperparameters 

Training runs were conducted using NVIDIA’s official PyTorch implementation of StyleGAN3 

and their scripts handling dataset assembly and image generation. Experiments were conducted on 

a GPU cluster from the Advanced Research Computing (ARC) at Virginia Tech utilizing three 

nodes of eight GPUs. Each training run was typically conducted for 3,500 kimg steps, meaning a 

single transfer learning job generates and discriminates images 3,500,000 times over. This training 

length was chosen after observing that a sizeable majority of runs reached an oscillatory state in 

performance by 3,500 kimg. Training runs for 512×512 and 1024×1024 resolutions completed in 

around 15 and 19 hours, respectively.  

Multiple initial transfer learning runs were conducted using NVIDIA’s AFHQv2 StyleGAN3 

network (AFHQ) to find optimal hyperparameters for experiments. These included adjustments to 

the generator and discriminator networks’ learning rates, the R1 regularization penalty on the 

discriminator, and the chosen augmentation method. Combinations that resulted in stable training 

and the lowest FID scores serve as the control run moving forward. Training was continued from 

the AFHQ network onto a target dataset of 651 beach sunset images scraped from the Instagram 

hashtag #beachsunset. Beach sunsets were chosen for the control run based on a dissimilarity to 

animal faces, reflecting a generic dataset used for transfer learning. The control run generator was 

capable of synthesizing plausible images of beach sunsets, but a sizeable portion were chaotic and 

random (Figure 10). 

Figure 9. FID scores for each data augmentation technique. 
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4. Experiments and Results 

4.1. Varying Starting Networks 

The first experiment used different pretrained networks as the starting points from which transfer 

learning is conducted on a common target dataset, exploring the impact of source network on 

transfer learning. Because transfer learning begins from a model’s weights that were previously 

learned from training on a source domain, performance may be related to the contents of the source 

domain or differences in knowledge captured due to the architecture or hyperparameters. If the 

source domain matters in the transfer learning process, then not all pretrained networks will 

perform equally when training on the same target dataset. Conversely, similar performance 

achieved by all starting networks transferring to the same target dataset may suggest that all source 

datasets provided sufficient prior knowledge captured by the pretrained networks to enable 

adaptation to the same target. This shared behavior might occur if each GAN learns similar core 

features of the image dataset or if knowledge gaps between the source and target datasets were 

equally surmountable by each network. Due to the use of pretrained networks without controlling 

for architecture and hyperparameters, this experiment cannot attribute cause of performance 

differences to the source dataset versus the architecture or hyperparameters of the starting network. 

Two other GANs pretrained by NVIDIA were used as starting networks in addition to the AFHQ 

network. While the AFHQ network was trained on images of animal faces, the FFHQ network was 

trained on images of human faces from Flickr photos, and the Metfaces network was trained on 

images of portraits from the Metropolitan Museum of Art [12] [7]. Table 1 details the size and 

resolution of each dataset. Images of fighter jets and latte art scraped from Instagram served as the 

target datasets. 

Table 1. Source dataset name, resolution, and size for each pretrained network. 

Source Dataset Resolution Images 

Animal Faces 512 × 512 16,130 

Flickr Human Faces 1024 × 1024 70,000 

Met Portraits 1024 × 1024 1,635 

Figure 10. Examples of plausible (left) and chaotic (right) beach generations. 
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While all networks performed similarly when training on the target dataset of fighter jets, this was 

not true for the target dataset of latte art (Figure 11). When performing transfer learning to a target 

domain of latte art, the animal faces generator network appears to cease learning as indicated by 

the non-decreasing FID score, while the Flickr faces and Metfaces networks continue to improve. 

Thus, there may be a source-to-target suitability mapping that is impactful in transfer learning on 

GANs, but the experiments do not shed light on how to measure the suitability. Source dataset size 

does not correlate with performance either early or late in training for either target domain, 

suggesting performance differences are not a caused by size of training data. 

4.2. Varying Target Datasets 

The second experiment began with the same pretrained starting network, the AFHQ network 

trained on images of animal faces, and transferred to different target datasets to explore how 

substantive differences in target dataset content factor into transfer learning. It is expected that 

datasets containing images with well-defined subjects, high contrast, and similar coloration 

composed of images with consistent spatial positioning, or how objects of prominence are situated 

in the image relative to the background, are easier to learn features from and result in stronger 

transfer learning performance. Considering these qualities of interest, new target datasets were 

reviewed and those containing the most ideal training samples were selected. These topics included 

corgis, betta fish, bald eagles, fighter jets, trains, pizza, latte art, flowers, and mountains. The 

continued training from the starting network exhibited differential performance in transfer learning 

depending on the target dataset it was trained on (Figure 12 and Table 2). Inspection of resulting 

images for the lowest FID scores, betta fish and corgis (Figure 13), demonstrated that these 

generators synthesize realistic images consistently.  

Figure 11. Transfer learning performance of different starting networks to #fighterjet (left) and #latteart 

(right) datasets.  
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Table 2. Minimum FID scores achieved per target dataset by transfer learning. 

Target Dataset Minimum FID Score 

Betta fish 41.417 

Corgis 46.317 

Fighter jets 49.353 

Beach sunsets 50.949 

Mountains 57.636 

Bald eagles 59.002 

Trains 60.140 

Latte art 104.555 

However, not all transfer learning runs with these target datasets performed as well, such as the 

run with the target dataset of latte art. Like the previous experiment with a starting network of 

animal faces and a target dataset of latte art, the generator trained in this run appeared to reach 

some block in its learning, as indicated by the largely non-decreasing FID score. An examination 

of its resulting generations supports this result, as the backgrounds of these images contain 

significant warping and chaotic additions; however, the generator appeared to learn how to 

generate the art on the coffee (Figure 14). 

Figure 14. Generations of latte art with realistic art patterns but chaotic backgrounds or misshapen cups. 

Figure 12. Transfer learning performance of animal faces to different target datasets. 

Figure 13. Generations of betta fish (left, middle) and a corgi (right). 
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These experiments do not allow us to determine which attributes of a source-target dataset pairing 

lead to a stronger or weaker transfer learning performance. All target datasets were selected with 

the expectation that they contained the best average training samples for their respective domains, 

yet the target datasets exhibited differential transfer learning performance. We hypothesize that 

there exist attributes of an image dataset that significantly affect the GAN learning process related 

to 1) source-target dataset distance and 2) variability.  

The similarity between the target datasets and the source dataset may impact transfer learning. 

Considering that the source dataset in the second experiment was trained on images of animal 

faces, it is worth noting that the transfer learning to target datasets of corgis and betta fish 

outperformed runs trained on target datasets of objects and settings, such as trains and mountains. 

Though samples of fish are not included in the animal faces source dataset, the prior knowledge 

of the animal faces network may have enabled robust adaptation to other kinds of animals with 

animal-like qualities, as seen with the anatomical accuracy in body texture and eye placement that 

exists in such generations of the betta fish. The poorer performance on the bald eagle target serves 

as a counterexample to the hypothesis that topical similarity was important, however. 

Variability between the images within a given target dataset may play a role in transfer learning. 

Not only is variability subjective when not quantitatively measured, but it can apply to many 

qualities of an image, including lighting patterns, coloration, topic relevance, and even spatial 

layout. The lattermost refers to how elements of an image are positioned, such as the placement of 

the main subject of the image. This quality is of particular interest, as the nature of Instagram 

images as social media content lends itself to more randomness in how images are taken than 

would be in a curated dataset. Based on the results, variability in this spatial layout appeared to be 

impactful, as indicated by the image-scraping process. While the images in the best-performing 

dataset of betta fish were scraped from the hashtag #bettaphotgraphy, nearly all of them were 

posted by a professional account that specializes in betta fish photography. As a result, most 

samples are the side profiles of betta fish as a sole subject against a black backdrop. On a larger 

scale, this could be an underlying reason behind the photorealism of generations from the animal 

faces network, whose training samples were near-uniform in their layout, consisting of the 

animal’s face and little inclusion of the background. This is the stark difference from the 

Instagram-scraped datasets of fighter jets or latte art, which contain a much wider variety of visual 

contexts in which the picture was taken. The corgi dataset also exhibited more variability in spatial 

layout (Figure 15) than the betta fish dataset which is expected to present a challenge for training 

GANs and may explain some the difference between the betta fish and corgi FID scores in early 

training. 

5. Conclusions and Future Work 

This work demonstrates Instagram as a viable method for forming datasets to use in GAN training, 

as a decent degree of realism is achievable by a network when trained on Instagram-scraped 

Figure 15. Variability of training samples scraped from the same #corgi hashtag. 
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samples. A concern when scraping samples is the potential for randomness, however, both in the 

relevance to the hashtag scraped from and how objects in the image are situated. In conjunction 

with filtering tools, a careful selection of the hashtag search criterion is required to reduce the 

variability and form datasets of high-quality images suitable for GAN training. 

This work serves as a preliminary exploration of transfer learning to train GANs on domains 

limited by specificity or abundance of samples. Attaining near-realistic generations after transfer 

learning from a pretrained GAN is possible under the right training conditions, but limits on dataset 

size and the stochastic nature of samples from Instagram lead to unpredictable results. Describing 

the methodology for achieving good results remains a challenge. A greater understanding of 

factors influencing the transfer learning process on GANs could yield systematic methods to train 

high-performing GANs more efficiently in terms of training samples and time. 

The future work that remains the most pressing is the definition of metrics and metadata to describe 

attributes of image datasets. These attributes and how they interact may be latent while being 

highly impactful in transfer learning. The differential performance demonstrated by this work 

suggests that these attributes exist. However, characterizing the contents and complexity of an 

image dataset remains difficult. Image representation itself is quantitative as three-dimensional 

matrices of pixel values that exist across spectrums of measurable characteristics. One hypothesis 

is that datasets containing images with well-defined subjects, high contrast, and similar coloration 

will result in stronger transfer learning performance. Metrics that may be useful for determining 

suitability for training GANs on small target datasets may be quantitative pixel-based 

measurements, such as the consistency in spatial positioning across images of a dataset. Defining 

metrics to quantify the qualitative aspects of a dataset, such as topic relevancy via semantically 

meaningful hashtags, could establish a window of expectation in the effects they and their 

interactions have on transfer learning. One metric that can be applied to either latent features or 

metadata is a measurement of difference between source and target datasets in transfer learning, 

and might be useful for choosing the most compatible source for a target domain [13] [14] [15].  
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