
 
 

 
 
 

The Journal of Test & Evalua�on    September 2023   Volume 44, Issue 3 

The ITEA Journal of Test and Evaluation, (ISSN 1054-0929), is published four times each year by the International Test and Evaluation 
Association, 11350 Random Hills Rd, Suite 800, Fairfax, VA 22030 (www.itea.org) 

Copyright 2023, International Test and Evaluation Association, All Rights Reserved. Reproduction in whole or in part is prohibited except by 
permission of the publisher. 

Using Changepoint Detection and AI to Classify Fuel 
Pressure States in Aerial Refueling 
  
Nelson Walker 
412th Test Wing, Department of the Air Force. Edwards AFB, California 
Michelle Ouellette  
412th Test Wing, Department of the Air Force. Edwards AFB, California 
Andrew Welborn 
412th Test Wing, Department of the Air Force. Edwards AFB, California 
Nicholas Valois 
412th Test Wing, Department of the Air Force. Edwards AFB, California 
  

Abstract 

An open question in aerial refueling system test and evaluation is how to classify fuel 
pressure states and behaviors reproducibly and defensibly when visually inspecting the 
data stream, post-flight. Fuel pressure data streams are highly stochastic, may exhibit 
multiple types of troublesome behavior simultaneously in a single stream, and may exhibit 
unique platform-dependent discernable behaviors. These data complexities result in 
differences in fuel pressure behavior classification determinations between engineers 
based on experience level and individual judgment. In addition to consuming valuable time, 
discordant judgements between engineers reduce confidence in metrics and other derived 
analytic products that are used to evaluate the system’s performance. A fuel-pressure 
artificial intelligence classification system (FACS), consisting of a changepoint detection 
algorithm and expert system, has provided a consistent and reproducible solution in 
classifying various fuel pressure states and behaviors with adjustable sensitivity. In this 
paper, we explain how the FACS system was built, provide examples of the solution in 
action, and discuss implications of this method. 
Keywords: Aerial refueling; Changepoint detection; Expert system; Fuel pressure; PELT 
algorithm; Test and evaluation 

Introduction 

Aerial refueling (AR) is the process of using an apparatus to pass aviation fuel from one 
aircraft (acting as a tanker) to another (acting as a receiver) in flight. The AR mission is 
usually conducted to increase the range or endurance of military receiver aircraft, be it for 
combat, transport, or reconnaissance. While it is not required, many world militaries employ 
purpose-built tanker aircraft to fulfill this mission. One of many technical requirements for 

http://www.itea.org/
https://itea.org/journals/volume-44-3/using-changepoint-detection-and-AI-to-classify-fuel-pressure-states-in-aerial-refueling/#walker
https://itea.org/journals/volume-44-3/using-changepoint-detection-and-AI-to-classify-fuel-pressure-states-in-aerial-refueling/#ouellette
https://itea.org/journals/volume-44-3/using-changepoint-detection-and-AI-to-classify-fuel-pressure-states-in-aerial-refueling/#welborn
https://itea.org/journals/volume-44-3/using-changepoint-detection-and-AI-to-classify-fuel-pressure-states-in-aerial-refueling/#valois


 
 

 
 
 

The Journal of Test & Evalua�on    September 2023   Volume 44, Issue 3 

The ITEA Journal of Test and Evaluation, (ISSN 1054-0929), is published four times each year by the International Test and Evaluation 
Association, 11350 Random Hills Rd, Suite 800, Fairfax, VA 22030 (www.itea.org) 

Copyright 2023, International Test and Evaluation Association, All Rights Reserved. Reproduction in whole or in part is prohibited except by 
permission of the publisher. 

AR is the tanker’s ability to pass fuel from the tanker to the receiver at a near constant 
pressure within safety limits while maximizing efficiency. 

The study of fuel pressure behaviors is a key component of the test and evaluation (T&E) of 
new tanker/receiver aircraft pairings. During AR operations, fuel from a tanker is transferred 
through various lengths and diameters of pipes and hoses into multiple individual fuel tanks 
in the receiver aircraft. Valves within the receiver aircraft’s fuel system open and close 
throughout the fuel transfer process to direct fuel to the various tanks and maintain aircraft 
balance until capacity is reached. As the valves open and close, the fuel flow rate from the 
tanker is disrupted and the pressure in the combined fuel system becomes variable. In turn, 
the tanker fuel delivery system must constantly adjust the pressure at which it provides fuel 
to maintain safe operations. Over time, patterns or behaviors in fuel pressure can emerge, 
such as spikes, drops, oscillations, and steady states. Fuel pressure data streams are 
therefore evaluated based on established criterion over a range of starting and ending 
receiver fuel weights to confirm that safe pressure levels are maintained throughout the 
fuel transfer process. Military specifications and references for AR may be found in MIL-
HDBK-516C (sec 8.7.1.7-8), ATP 3.3.4.5 Edition B (sec 1.12.1-2), and ATP 3.3.4.6 Edition A 
(sec 2.5-7). 
 
In practice, it can be difficult for AR engineers to identify individual fuel pressure behaviors 
within a data stream because some of the various behaviors can occur simultaneously and 
are highly polymorphic (a behavior type may look different from one occurrence to the 
next). While individual instances of pressure exceedance can be easily identified, the 
underlying and more nuanced fuel pressure behaviors can be difficult to consistently 
identify and differentiate across the varied experience levels of the AR engineers 
performing the data analysis at any given time. Additionally, reporting time constraints and 
resource limitations have precluded the engineers from routinely performing more detailed 
analyses and developing an authoritative consensus. As a result, an authoritative truth 
source for fuel pressure behavior labels does not exist for any given dataset. This paper 
details how the AR engineers collaborated with statisticians and data scientists to develop 
a defensible, reproducible, and consistent method to identify and classify various fuel 
pressure behaviors. 
 
Classifying fuel pressure behavior using statistical or machine learning methods may seem 
deceptively simple in this context. At first glance, one might employ a supervised 
classification model (machine learning-based or otherwise) which would be trained on 
SME-labeled data that exhibit the various problematic behavior. However, any proposed 
solution must overcome several non-trivial challenges.  
 
The first challenge was that, while most of the problematic fuel pressure behaviors may 
seem simple to identify, each behavior is highly polymorphic, and some behaviors can 
occur simultaneously. For our purposes, polymorphism refers to the property that any given 
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occurrence of a particular behavior type will usually not be identical to any other occurrence 
due to the unique combination of stochastic and deterministic physical processes involved 
(e.g., atmospheric conditions, valve position, pump setting, remaining receiver capacity). 
Rather, behavior types are distinguished by certain characteristics like the range in fuel 
pressure between adjacent troughs and crests, the magnitude of individual troughs and 
crests in relation to defined thresholds, and duration of behavior. A multivariate 
classification model (or multiple univariate classification models) would need to be trained 
on a wide variety of data-stream cases across multiple tankers and receivers to be capable 
of adequate predictive accuracy.  
 
The second challenge is that the required correctly labeled data does not exist because of 
SME time constraints and the difficulty of consistently and defensibly classifying fuel 
pressure behaviors across tankers, receivers, and AR engineers. Imperfectly labeled data 
constitute a form of measurement error that would lead to additional prediction error from 
any trained model.  
 
A third challenge came to light after we began to build a model: the types of fuel pressure 
behaviors of interest had not been well characterized and canonized prior to this modeling 
effort, partially due to the polymorphic nature of each behavior type. The process of 
iteratively building a model was powerful in eliciting information about additional behavior 
types, definition nuances, and edge cases from the SMEs. We determined that 
characterizing and officially defining the fuel pressure behavior types, refining the 
definitions over time, and building an expert system (ES) AI based on the behavior 
definitions would be the easiest way to overcome these challenges and produce a viable 
automatic classification system. 
 
An expert system (ES) is a form of artificial intelligence that was first invented in the mid to 
-late 1970’s before becoming widely used in the 1980’s and beyond (Aronson, 2003). An ES 
is so named because it is designed to incorporate and apply the domain-specific knowledge 
of an expert to complete set tasks. For example, expert systems were originally envisioned 
to provide analytical services about subjects like logistics (XCON; Leonard-Barton & Sviokla, 
1988), accounting (ExperTAX; Leonard-Barton & Sviokla, 1988), geology (MUDMAN; 
Leonard-Barton & Sviokla, 1988), chemistry (Dendral; Leonard-Barton & Sviokla, 1988), and 
medicine (MYCIN; Copeland, 2018; Shortliffe, 1977). At its core, an ES contains a corpus of 
knowledge, well-defined definitions, and logical rules that can automatically identify 
patterns or complete tasks. Developers use a process called knowledge discovery or 
knowledge engineering to elicit information and rules from SMEs and incorporate that body 
of knowledge into a program that completes specific expert tasks. Many situations where 
ES have previously been used, or where ES had partially solved a problem have since been 
addressed using deep learning models (e.g., speech to text transcription and translating 
between languages; Hayes-Roth, Waterman, & Lenat, 1983). However, the general tools and 
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principles of ES are still used and are so commonplace that an ES is often not recognized 
as a form of AI by the layman. 
 
We have pursued fuel pressure behavior classification via ES because 1) fuel pressure 
behaviors have discernable characteristics, 2) the classification work has historically been 
done by SMEs and AR engineers that relied on engineering judgment, and 3) no definitive 
truth source exists for any given fuel pressure time series. Importantly, applying an ES to 
fuel pressure behavior classification entails an implicit task of sub-dividing the data stream 
into segments of adjacent data points that have similar characteristics. Sub-dividing the 
data stream allows an ES to apply rules that identify the beginning and end of each 
behavior. Changepoint detection algorithms are a natural choice to complete this sub-
division task. 
 
A changepoint can be viewed as a natural breakpoint between two segments (where each 
segment consists of at least two observations) of a time series data stream where the 
underlying process that produces the data has changed in some discernable way. 
Changepoint detection algorithms or models can use various parametric or non-parametric 
methods to estimate the location of these natural changes. Identifying changepoints 
effectively separates or clusters the data into segments of adjacent observations that have 
common characteristics. Changepoint detection algorithms may be considered an 
unsupervised form of machine learning because the data do not already contain markers or 
labels for where the underlying process changed (Aminikhanghahi & Cook, 2017). These 
algorithms have a wide range of applications, from medical condition monitoring and 
speech recognition (Aminikhanghahi & Cook, 2017), to manufacturing process control (Wu, 
Li, Lanye Hu, & Hu, 2022), and other forms of anomaly detection. 
 
The remainder of the paper will proceed as follows: first, we introduce our changepoint 
detection algorithm of choice, discuss the algorithm’s properties, and discuss how we 
implement it on a fuel pressure data stream. Second, we explain the expert system AI that 
we produced, explain the types of behavior that the system identifies, and introduce metrics 
that quantify the output of the AI. Third, we discuss the T&E process for the entire FACS 
system. We then present real data examples where the FACS system was applied and 
discuss the implications on T&E for aerial refueling platforms. 

The Pruned Exact Linear Time Changepoint Detection Algorithm 

The changepoint detection method that we employ in this paper is the Pruned Exact Linear 
Time (PELT) algorithm. Killick, Fearnhead, & Eckley (2012) showed that the PELT algorithm 
is optimal in estimating changepoint times when we assume that new observations are 
added by increasing the length of time covered by the data stream rather than sampling the 
underlying process at a higher rate. The algorithm sequentially checks for changepoints 
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from the beginning to end of the data stream. After the PELT algorithm determines that an 
observation is not a changepoint in any given iteration, that observation is removed from 
the candidate set of possible changepoints formed by the remainder of the observations in 
the data stream. This feature of the PELT algorithm that removes observations from the set 
of changepoint candidates is called “pruning”. The PELT algorithm is also considered an 
exact method for estimating changepoints, and the computation time increases linearly 
with additional observations in the data stream. Hence, the algorithm is described as a 
pruned, exact, linear time algorithm. 

The PELT algorithm is described in detail by Killick, Fearnhead, & Eckley (2012) and 
implemented in the changepoint R package as described by Killick & Eckley (2014). We 
direct the reader to those references for a thorough treatment of the PELT algorithm and 
instead tailor this paper to the. Let  be an ordered sequence of data 
on which we apply the PELT algorithm. The main output of the algorithm is a vector 
of m strictly increasing index values  . Each value is the index of an 
observation in  that corresponds to a changepoint. The starting and ending index 
markers for changepoints are  and , respectively. The algorithm 

accomplishes its work using a sum of cost functions,  which is often a sum of 
negative log-likelihoods or penalized negative log-likelihoods, to estimate where each 
changepoint should be located As the PELT algorithm executes, it divides the data stream 
up into segments of adjacent ordered observations, with one segment per cost function. 
The last observation in each segment is marked as a changepoint that delineates between 
the current segment and the next segment. Each segment must be at least two 
observations long, although the practitioner may choose a longer minimum segment length 
if doing so meets the end goals of the modeling effort. 

We chose a gamma log-likelihood with a Bayesian information criterion (BIC) penalty as the 
general form of our cost function because it proved to be more customizable than the 
standard normal log-likelihood. The gamma distribution is parameterized with a fixed shape 
and random scale. We analytically calculated the fixed shape parameter based on the mean 
and variance of the gamma distribution that would detect changes in fuel pressure of the 
appropriate magnitude. Since the shape must be provided while the scale parameter is 
estimated for each data segment, we designated the shape as a tunable parameter. 

While the PELT algorithm estimates relevant breakpoints between homogeneous segments 
of data, it is unable to provide a holistic and relevant engineering solution for classifying 
fuel pressure behaviors by itself. We therefore require another method to identify and 
interpret any meaning in the segments between and across changepoints to obtain any 
engineering and analytical benefit. An expert system artificial intelligence provided the 
missing interpretation for our purposes. 
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An Expert System 

Expert systems contain a variety of components and follow a building process that may be 
tailored to individual problems (see Aronson, 2003 for a complete explanation). The most 
common of possible ES components are a knowledge base, an inference engine, a user 
interface, a knowledge acquisition subsystem, a blackboard or working memory, an 
explanation system, and a knowledge refining system. To build an ES, one must first elicit, 
validate, and represent knowledge from expert sources in a knowledge base. The process 
of collecting and encapsulating knowledge is often called knowledge engineering. 
Knowledge may then be represented in various structures, such as a set of rules, frames, 
decision tables, and decision trees (see Aronson, 2003 for a complete list and explanation). 
An ES may employ an inferencing engine to query the knowledge base when given a task, 
and produce predictions using reasoning methods, logic, rules, and case matching. Finally, 
an ES may have an explanation subsystem that lists the rules and knowledge that lead to a 
conclusion and/or may include a knowledge refinement system to update the knowledge 
base as additional information becomes available. Multiple sources make clear that 
building an ES is an iterative process (Aronson, 2003; Frishkoff, et al., 2007). 

Since no authoritative truth source about fuel pressure behaviors currently exists, and 
coming to a consensus about labels for hundreds of minutes of data would be 
comparatively tedious and inefficient, we constructed an ES based on AR SME knowledge 
elicitation and engineering. The process was iterative and highly collaborative. We began by 
eliciting information (including typical characteristics and rules to identify when the 
behavior has started or ended) about several categories of fuel pressure behaviors. We 
encapsulated that knowledge in a system of multiple logical rule sets, where each set of 
rules processed the output from the PELT algorithm and the fuel pressure data to identify a 
particular type of fuel pressure behavior. The rules that identified behavior occurring within 
and between adjacent segments were dependent on the following summary statistics and 
qualitative attributes of each data segment: 

• Mean 
• Variance 
• Minimum value 
• Maximum value 
• First value 
• Middle value 
• Last value 
• Overall shape (constant, crest, trough, strictly increasing, strictly decreasing) 
• Segment length in seconds 
• Difference in mean value between adjacent segments 
• Whether the segment qualified as a crest 
• Whether the segment qualified as a trough 
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We designed the expert system flow to execute the classification rules sequentially and 
deterministically adjudicate ambiguous behavioral cases. After each sprint of development, 
we experimented with multiple data sets and combed through the output to make small 
scale adjustments before soliciting SME feedback. We then adjusted the logical rule sets, 
pressure behavior definitions, and system flow before repeating the cycle. Our efforts 
helped SMEs formalize and document aspects of their domain knowledge and identify 
additional types of fuel pressure behavior to track. Over time, the ES matured to include 
adjustable parameters, specific metrics, and logical comparisons that helped identify and 
differentiate between the target behaviors in a variety of conditions. The result was an ES 
that could interpret adjacent fuel pressure segments as one or more types of fuel pressure 
behavior while being robust to idiosyncratic fuel pressure behavior morphologies among 
various tanker-receiver pairings. 

We now enumerate the types of fuel pressure behavior that the ES identifies, describe the 
characteristics that identify each behavior, and explain the system flow that directs the data 
stream through various logic rules sets. We identified and defined four separate types of 
problematic behavior (Type 1-4; seen in Table 1) that are characterized by non-stationary 
fuel pressure behavior of various amplitudes, frequencies, and directions. Each type of 
behavior can occur as an oscillation or a spike, where an oscillation exhibits a problematic 
behavior greater than or equal to a preset number of troughs/crests in a row and a spike 
lasts shorter than that same preset number. We also identified and defined three non-
problematic fuel pressure behavior types, shown in Table 2. 

Table 1 – A table containing the descriptions of the four problematic behaviors identified by 
AR engineering SMEs. 
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Table 2 – A table containing the descriptions of the three non-problematic behaviors identified 
by AR engineering SMEs. 
 

We note that it was possible to have a length of fuel pressure time series data be classified 
as multiple types of behavior simultaneously (e.g., Type 2 and Type 3 behavior are not 
mutually exclusive). Therefore, each of the above seven general types of behaviors required 
their own rules to recognize when the behavior started and stopped. Polymorphisms for the 
behavior types across multiple tankers and receivers also necessitated multiple sets of 
logic to identify the same type of behavior and a deterministic inference engine to identify 
and deconflict duplicate or conflicting classifications. For example, not all forms of Type 2 
behavior could be identified by a single set of characteristics or logic. A second set of logic 
was developed that was not dependent on differences in mean pressure between adjacent 
segments to identify the remaining cases of Type 2 behavior. The results of the two logic 
sets were deduplicated and combined. Figure 1 provides a visual of the order by which the 
inference engine passed pre-processed data segments through the logic sets, while 
deconflicting any contradictions.  

 
Figure 1: A diagram of the expert system flow and inference engine. Boxes represent logic 
sets that identify behavior types or categorize the data segments in some way. Arrows 
represent the movement of data through the expert system flow. Dark blue arrows are 
associated with moving data between logic sets that classify behaviors, while light blue and 
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gray arrows move data through logic sets that eliminate redundancies and address 
contradictions in classification, respectively. Segments that were not classified as “spool-
up” behavior are simultaneously fed through two separate branches of the ES and inference 
engine before contradictions are resolved. 
 
After the ES has processed all the fuel pressure segments, the system output consists of a 
matrix of start and end times for each type of behavior and an identifier to map each 
instance of behavior back to the associated data segments. An analyst can then use a 
separate function to compile statistics about the prevalence of each type of behavior or 
groupings of similar behaviors (e.g., all behaviors that qualify as Type 1-4), and conduct 
other statistical analyses by behavior groups to support evaluation of the AR system. 

The PELT algorithm and ES together form the Fuel-pressure Artificial intelligence 
Classification System (FACS). The FACS identifies various fuel pressure behaviors, 
including their beginning and end, as shown in Figure 2. 

 
Figure 2: A simplification of how a fuel pressure data stream is analyzed by the FACS. 1) 
Raw data is provided to the FACS; 2) the PELT algorithm estimates the locations of 
changepoints; 3) the ES classifies fuel pressure segments as various behavior types; 4) the 
ES provides the start and stop times for each instance of any fuel pressure behavior that is 
present in the data stream. Segments highlighted in green are steady state. Yellow 
segments denote Type 1-4 behavior. Gray segments denote left-over behavior. 
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Methods and Metrics for Evaluating FACS Validity and 
Performance 

Grogono and Suen (1993), Frishkoff, et al. (2007), and Miranda et al. (2011) all propose 
methods for validating and evaluating the performance of aspects of an ES. Grogono and 
Suen (1993) advocates for functional testing and structural testing. In functional testing, 
each aspect of ES functionality is checked using test cases of varying difficulty levels. In 
structural testing, test cases are built to show that all aspects of the ES order of operations 
execute as designed and expected. At every step of development, we employed both 
functional and structural tests on the FACS ES. We solicited feedback from SMEs at every 
development iteration to improve performance. Perhaps unsurprisingly, the iterative 
feedback elicited numerous refinements to fuel pressure behavior definitions as well as 
requests for additional functionality. 

Classifying fuel pressure behaviors in AR requires elements of objectivity and subjectivity. 
As a result, no gold standard of performance for the FACS exists, per se. Rather, the utility 
of the FACS in this situation is the reproducibility, defensibility, and consistency of applying 
the same logical rule sets across fuel pressure data regardless of when they were 
collected. In the absence of objective measures of validity, Grogono and Suen (1993) 
recommends employing an agreement method – that is, compare the quality of 
classifications from the FACS against that of one or more SMEs. We provide a side-by-side 
comparison of SME classification work against FACS work in the next section. 

A final challenge in operational testing is picking the values for the tunable FACS 
hyperparameters, such as the shape for the gamma distribution in the PELT algorithm, and 
the difference in mean pressure between adjacent segments required to allow segments to 
be checked for Type 2-4 behavior. The gamma shape parameter influences what 
differences in fuel pressure from one observation to another are large enough to 
necessitate inserting a changepoint. The difference in mean pressure parameter acts 
similarly to a penalty and influences how large the difference in mean fuel pressures 
between adjacent segments must be to distinguish between steady state and certain 
transient behaviors (i.e., Type 2-4). We learned while developing the FACS that these hyper-
parameters are correlated (the setting of one hyper-parameter affects the optimality of the 
value of another hyper-parameter) and must be adjusted depending on the type of tanker 
that passes fuel and/or the type of receiver being refueled. For example, we learned certain 
hyper-parameter values enabled quality fuel pressure classification for smaller, lighter 
fighter aircraft, while a slightly different set of hyper-parameter values worked better for 
larger, heavier cargo aircraft. We gained this knowledge via diligent functional test 
experience. Tracking the summary statistics about total time classified into each behavior 
type across different hyper-parameter values, combined with visual and SME checks, can 
provide a sense of which hyper-parameter values give stable performance. 
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Examples of the FACS in Action with Comparisons Against SME 
Classification 

We now compare fuel pressure classification output from FACS against the work of an AR 
engineer. The examples we provide are fuel pressure time series data collected during 
boom AR certification for three different tanker/receiver pairings: Tanker A paired with 
Receiver 1, Tanker A paired with Receiver 2, and Tanker B paired with Receiver 3. The data 
were collected by the Global Reach Combined Test Force at Edwards Air Force Base, 
California between 2010 and 2023. For simplicity, we focus on three behaviors that are of 
most concern: Type 1, Type 2 that crosses above 55 psig, and Type 3. We show plots of 
approximately forty seconds of labeled FACS output compared to AR engineer judgements 
for each pairing and discuss our observations. 

First, we examine data collected from Tanker A paired with Receiver 1 in Figure 3. This 
period contains Type 1-3 behaviors. While both the AR engineer and FACS identify areas of 
Type 1-3 behavior, the FACS can simultaneously identify multiple types of behavior that are 
layered over each other to provide a more thorough analysis.

 
Figure 3: A comparison of how an AR engineer classified fuel pressure behavior for Tanker A 
and Receiver 1 versus the FACS. 
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Next, we examine data collected from Tanker A paired with Receiver 2 (TAR2) in Figure 4. 
This period contains complex Type 2-3 behaviors. Again, both the AR engineer and FACS 
identify areas of Type 3 behavior. Where the engineer identifies the behavior starting at 
1582 seconds as a single stretch of Type 3 oscillation, the FACS breaks this period into two 
separate Type 3 oscillations and one Type 3 spike. Conversely, the engineer only identifies 
one area of Type 2 spiking, while the FACS identifies every instance that fuel pressure rose 
above 55 psig as a Type 2 spike.

 
Figure 4: A comparison of how an AR engineer classified fuel pressure behavior for Tanker A 
and Receiver 2 versus the FACS. 

Last, we examine data collected from Tanker B paired with Receiver 3 in Figure 5. This 
period contains Type 1-3 behaviors. While the AR engineer identified Type 3 behavior 
throughout the data stream, they did not identify the Type 2 behavior at 496 seconds and 
misidentified Type 1 behavior as starting around 517 seconds instead of 502 seconds. The 
FACS subdivided the period from 495-502 seconds into several types of behavior based on 
the tiny oscillations found around 498 seconds that ended the Type 2-3 behaviors.  
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Figure 5: A comparison of how an AR engineer classified fuel pressure behavior for Tanker B 
and Receiver 3 versus the FACS. 
 
In general, we glean several thoughts from the comparison of the FACS vs. AR engineer 
classification work. First, the engineer and FACS provided comparable classification work in 
most cases. Second, an AR engineer seems more able to identify broad patterns without 
bogging down in the minutia of extremely local behaviors, as evidenced from the TAR2 
example in Figure 4. Third, an AR engineer seems less likely to correctly estimate precise 
quantities that determine the difference between certain types of behavior, like Type 1 and 
Type 2 behavior (fuel pressure above x psig for longer than two seconds at a time vs. 
shorter than two seconds at a time, respectively). Fourth, an AR engineer has difficulty 
identifying more than one behavior type at once in the same segments of data. Lastly, the 
FACS has an implicit weakness of occasionally needing to be calibrated if it encounters 
unique polymorphisms of Type 1-4 behaviors that were unseen or unknown during 
development. In this event, the logic within the ES would need to be enhanced to 
successfully classify the previously unseen forms of Type 1-4 behaviors moving forward. 
Regression testing would also be necessary to ensure that these logical changes would not 
degrade legacy functionality.  
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Initial AR SME Feedback on FACS Performance 

Once the initial calibration of the FACS was completed, AR SMEs had an opportunity to 
review results and provide their perspective on the utility of the outputs. The SMEs found 
several aspects of the FACS to be particularly helpful. First, the FACS can process large 
data sets in a consistent manner and remove the subjectivity of each AR engineer 
performing data analysis. Second, the FACS provides detailed visual and categorical 
outputs which allow the AR engineers flexibility in their evaluations and reporting. Third, the 
FACS is more precise than an AR engineer can be when visually analyzing the data. Last, 
the FACS requires significantly less time (seconds) to complete an analysis than the 
manual reviews and discussions currently taking place (hours), resulting in a substantially 
smaller workload while improving the defensibility of the evaluations. 

Conclusion 

In this paper we have briefly discussed current challenges in defensibly and consistently 
classifying fuel pressure behaviors observed during AR certification operations. We have 
explained the difficulty of addressing this problem with widely used classification methods 
– namely that supervised classification requires authoritatively labeled fuel pressure data. 
We have explained how we addressed the behavior classification problem with the FACS, 
composed of a PELT changepoint detection algorithm and a tunable ES AI. We explained 
how AI like the FACS is typically validated when no authoritative truth source exists. Lastly, 
we showed that the FACS and an AR engineer make relatively similar judgements and 
discussed the difficulties, strengths, and weaknesses of the FACS approach. To date, the 
FACS provides a consistent, defensible, and repeatable analysis of fuel pressure data that 
substantially reduces engineer workload while improving the quality of the AR system 
evaluation. 

The FACS system was trained using input from AR SMEs, a large set of AR data, and 
programming skill from statisticians and data scientists. However, the training data for the 
FACS is only a subset of fuel pressure time series data to which the FACS could be applied. 
As such, the FACS may require future refinements over time as unobserved behaviors could 
cause classification difficulties. In the future, one could train a reinforcement learning 
model on the output of the FACS and allow AR engineers to dispute questionable FACS 
judgements to continue improving the model over time. It is conceivable that the original 
FACS system (composed of the PELT algorithm and ES) could be replaced at some future 
time by the resulting reinforcement learning model. A system, similar to the FACS, may be 
created to provide consistent, defensible, and repeatable analysis of other subsystems, 
such as hydraulic pressure, electrical voltage, or oil pressure. 
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